Acceso abierto

Dichotomized Incenter Fuzzy Triangular Ranking Approach to Optimize Interval Data Based Transportation Problem


1. Hashemi, S. M., M. Modarres, E. Nasrabadi, M. M. Nasrabadi. Fully Fuzzified Linear Programming, Solution and Duality. – J. Intell. Fuzzy Syst., Vol. 17, 2006, pp. 253-261.Search in Google Scholar

2. Hitchcock, F. L. The Distribution of a Product from Several Sources to Numerous Localities. – Stud. Appl. Math., Vol. 20, 1941, pp. 224-230.10.1002/sapm1941201224Search in Google Scholar

3. ÓhÉigeartaigh, M. A Fuzzy Transportation Algorithm. – Fuzzy Sets Syst., Vol. 8, 1982, pp. 235-243.10.1016/S0165-0114(82)80002-XSearch in Google Scholar

4. Mathur, N., P. K. Srivastava, A. Paul. Trapezoidal Fuzzy Model to Optimize Transportation Problem. – Int. J. Model. Simul. Sci. Comput., Vol. 7, 2016, pp. 1650028.10.1142/S1793962316500288Search in Google Scholar

5. Mathur, N., P. K. Srivastava, A. Paul. Algorithms for Solving Fuzzy Transportation Problem. – Int. J. Math. Oper. Res., Vol. 12, 2018, pp.190-219.10.1504/IJMOR.2018.089677Search in Google Scholar

6. Bellman, R. E., L. A. Zadeh. Decision-Making in a Fuzzy Environment. – Manag. Sci., Vol. 17, 1970, pp. B-141.10.1287/mnsc.17.4.B141Search in Google Scholar

7. Chanas, S., W. Ko\lodziejczyk,, A. Machaj. A Fuzzy Approach to the Transportation Problem. – Fuzzy Sets Syst., Vol. 13, 1984, pp. 211-221.10.1016/0165-0114(84)90057-5Search in Google Scholar

8. Chanas, S., D. Kuchta. Fuzzy Integer Transportation Problem. – Fuzzy Sets Syst., Vol. 98, 1998, pp. 291-298.10.1016/S0165-0114(96)00380-6Search in Google Scholar

9. Liu, S.-T., C. Kao. Solving Fuzzy Transportation Problems Based on Extension Principle. – Eur. J. Oper. Res., Vol. 153, 2004, pp. 661-674.10.1016/S0377-2217(02)00731-2Search in Google Scholar

10. Gani, A. N., K. A. Razak. Two Stage Fuzzy Transportation Problem. – J. Phys Sci, Vol. 10, 2006, pp. 63-69.Search in Google Scholar

11. Dinagar, D. S., K. Palanivel. The Transportation Problem in Fuzzy Environment. – Int. J. Algorithms Comput. Math., Vol. 2, 2009, pp. 65-71.Search in Google Scholar

12. Natarajan, P. P. G. A New Method for Finding an Optimal Solution of Fully Interval Integer Transportation Problems. – Appl. Math. Sci., Vol. 4, 2010, pp. 1819-1830.Search in Google Scholar

13. Pandian, P. G. Natarajan. A New Algorithm for Finding A Fuzzy Optimal Solution for Fuzzy Transportation Problems. Appl. Math. Sci., Vol. 4, 2010, pp. 79-90.Search in Google Scholar

14. Kumar, A., K. Amarpreet. Application of Classical Transportation Methods for Solving Fuzzy Transportation Problems. – J. Transp. Syst. Eng. Inf. Technol., Vol. 11, 2011, pp. 68-80.10.1016/S1570-6672(10)60141-9Search in Google Scholar

15. Chandran, S., G. Kandaswamy. A Fuzzy Approach to Transport Optimization Problem. – Optim. Eng., Vol. 17, 2016, pp. 965-980.10.1007/s11081-012-9202-6Search in Google Scholar

16. Ebrahimnejad, A. An Improved Approach for Solving Fuzzy Transportation Problem with Triangular Fuzzy Numbers. – J. Intell. Fuzzy Syst., Vol. 29, 2015, pp. 963-974.10.3233/IFS-151625Search in Google Scholar

17. Bisht, D., P. K. Srivastava. A Unique Conversion Approach Clubbed with a New Ranking Technique to Optimize Fuzzy Transportation Cost. – AIP Conference Proceedings, Vol. 1897, 2017, pp. 020-023.10.1063/1.5008702Search in Google Scholar

18. Zheng, Y.-J., H.-F. Ling. Emergency Transportation Planning in Disaster Relief Supply Chain Management: A Cooperative Fuzzy Optimization Approach. – Soft Comput., Vol. 17, 2013, pp. 1301-1314.10.1007/s00500-012-0968-4Search in Google Scholar

19. Jamrus, T., C.-F. Chien, M. Gen, K. Sethanan. Multistage Production Distribution under Uncertain Demands with Integrated Discrete Particle Swarm Optimization and Extended Priority-Based Hybrid Genetic Algorithm. – Fuzzy Optim. Decis. Mak., Vol. 14, 2015, pp. 265-287.10.1007/s10700-014-9200-6Search in Google Scholar

20. Bisht, D. C., P. K. Srivastava. Trisectional Fuzzy Trapezoidal Approach to Optimize Interval Data Based Transportation Problem. – J. King Saud Univ.-Sci., 2018.Search in Google Scholar

21. Zadeh, L. A. Fuzzy Sets. – Inf. Control, Vol. 8, 1965, pp. 338-353.10.1016/S0019-9958(65)90241-XSearch in Google Scholar

22. Iskander, M. G. Fuzzy Goal and Possibility Programming with Imprecise Goal Hierarchy. – Int. J. Oper. Res., Vol. 27, 2016, pp. 552-561.10.1504/IJOR.2016.10000306Search in Google Scholar

23. Mandal, T. K., G. P. Samanta. EPQ Model with Fuzzy Coefficient of Objective and Constraint via Parametric Geometric Programming. – Int. J. Oper. Res., Vol. 17, 2013, pp. 436-448.10.1504/IJOR.2013.054972Search in Google Scholar

24. Visalakshmi, S., P. Lakshmi, M. S. Shama, K. Vijayakumar. An Integrated Fuzzy DEMATEL-TOPSIS Approach for Financial Performance Evaluation of GREENEX Industries. – Int. J. Oper. Res., Vol. 23, 2015, pp. 340-362.10.1504/IJOR.2015.069626Search in Google Scholar

25. Lan, J., R. Jin, Z. Zheng, M. Hu. Priority Degrees for Hesitant Fuzzy Sets: Application to Multiple Attribute Decision Making. – Oper. Res. Perspect., Vol. 4, 2017, pp. 67-73.10.1016/j.orp.2017.05.001Search in Google Scholar

26. Zamani-Sabzi, H., J. P. King, C. C. Gard, S. Abudu. Statistical and Analytical Comparison of Multi-Criteria Decision-Making Techniques under Fuzzy Environment. – Oper. Res. Perspect., Vol. 3, 2016, pp. 92-117.10.1016/j.orp.2016.11.001Search in Google Scholar

27. Akyar, E., H. Akyar, S. A. Düzce. A New Method for Ranking Triangular Fuzzy Numbers. – Int. J. Uncertain. Fuzziness Knowl.-Based Syst., Vol. 20, 2012, pp. 729-740.10.1142/S021848851250033XSearch in Google Scholar

28. Ilieva, G. A Fuzzy Approach for Bidding Strategy Selection. – Cybernetics and Information Technologies, Vol. 12, 2012, No 1, pp. 61-69.10.2478/cait-2012-0005Search in Google Scholar

29. Ilieva, G. TOPSIS Modification with Interval Type-2 Fuzzy Numbers. – Cybernetics and Information Technologies, Vol. 16, 2016, No 2, pp. 60-68.10.1515/cait-2016-0020Search in Google Scholar

30. Ilieva, G. Group Decision Analysis with Interval Type-2 Fuzzy Numbers. – Cybernetics and Information Technologies, Vol. 17, 2017, No 1, pp. 31-44.10.1515/cait-2017-0003Search in Google Scholar

31. Jain, S., P. C. Mathpal, D. Bisht, P. Singh. A Unique Computational Method for Constructing Intervals in Fuzzy Time Series Forecasting. – Cybernetics and Information Technologies. Vol. 18, 2018, No 1, pp. 3-10.10.2478/cait-2018-0001Search in Google Scholar

Calendario de la edición:
4 veces al año
Temas de la revista:
Computer Sciences, Information Technology