[1. Bartoli, D., A. A. Davydov., G. Faina, A. A. Kreshchuk, S. Marcugini, F. Pambianco. Upper Bounds on the Smallest Size of a Complete Arc in PG(2, q) under a Certain Probabilistic Conjecture. – Problems Inform. Transm., Vol. 50, 2014, No 4, pp. 320-339.10.1134/S0032946014040036]Search in Google Scholar
[2. Bartoli, D., A. A. Davydov., G. Faina, S. Marcugini, F. Pambianco. Conjectural Upper Bounds on the Smallest Size of a Complete ap in PG(N, q), N ≥ 3. – Electron. Notes Discrete Math., Vol. 57, 2017, pp. 15-20.10.1016/j.endm.2017.02.004]Abierto DOISearch in Google Scholar
[3. Bartoli, D., A. A. Davydov., S. Marcugini, F. Pambianco. On the Smallest Size of an Almost Complete Subset of a Conic in PG(2, q) and Extendability of Reed-Solomon Codes. – arXiv:1609.05657 [math.CO], 2016.]Search in Google Scholar
[4. Bartoli, D., G. Faina, S. Marcugini, F. Pambianco. A Construction of Small Complete Caps in Projective Spaces. – J. Geom., Vol. 108, 2017, No 1, pp. 215-246.10.1007/s00022-016-0335-1]Search in Google Scholar
[5. Clevenson, M. L., W. Watkins. Majorization and the Birthday Inequality. – Math. Magazine, Vol. 64, 1991, No 3, pp. 183-188.10.1080/0025570X.1991.11977606]Search in Google Scholar
[6. Davydov., A. A., G. Faina, S. Marcugini, F. Pambianco. Upper Bounds on the Smallest Size of a Complete Cap in PG(N, q), N ≥ 3, under a Certain Probabilistic Conjecture. – arXiv:1706.01941 [math.CO], 2017.]Search in Google Scholar
[7. Davydov., A. A., S. Marcugini, F. Pambianco. Upper Bounds on the Smallest Size of an Almost Complete Cap in PG(N, q). – In: Proc. of 8th International Workshop on Optimal Codes and Related Topics, OC’17 (in Second International Conference “Mathematics Days in Sofia”), Sofia, Bulgaria, 2017, pp. 67-72.]Search in Google Scholar
[8. Hirschfeld, J. W. P. Projective Geometries over Finite Fields. Second Edition. Oxford, Oxford University Press, 1998.]Search in Google Scholar
[9. Hirschfeld, J. W. P. Finite Projective Spaces of Three Dimensions. Oxford, Oxford University Press, 1985.]Search in Google Scholar
[10. Hirschfeld, J. W. P., L. Storme. The Packing Problem in Statistics, Coding Theory and Finite Geometry: Update 2001. – In: A. Blokhuis, J. W. P. Hirschfeld et al. Eds. Proc. of 4th Isle of Thorns Conf., Chelwood Gate, 2000, Kluwer Academic Publisher, Boston, Finite Geometries, Developments of Mathematics, Vol. 3, 2001, pp. 201-246.10.1007/978-1-4613-0283-4_13]Search in Google Scholar
[11. Hirschfeld, J. W. P., J. A. Thas. Open Problems in Finite Projective Spaces. – Finite Fields and their Appl., Vol. 32, 2015, No 1, pp. 44-81.10.1016/j.ffa.2014.10.006]Search in Google Scholar
[12. Kovàcs, S. J. Small Saturated Sets in Finite Projective Planes. – Rend. Mat. (Roma), Vol. 12, 1992, No 1, pp. 157-164.]Search in Google Scholar
[13. Sayrafiezadeh, M. The Birthday Problem Revisited – Math. Magazine, Vol. 67, 1994, No 3, pp. 220-223.10.1080/0025570X.1994.11996217]Search in Google Scholar
[14. Storme, L. Completeness of Normal Rational Curves. – J. Algebraic Combin., Vol. 1, 1992, No 2, pp. 197-202.10.1023/A:1022428405084]Search in Google Scholar
[15. Ughi, E. Small Almost Complete Arcs. – Discrete Math., Vol. 255, 2002, No 3, pp. 367-379.10.1016/S0012-365X(01)00412-5]Search in Google Scholar