Acceso abierto

Experimental Demonstration Of The Fixed-Point Sparse Coding Performance


Cite

1. Hinton, G., S. Osindero, Y. T h e. A Fast Learning Algorithm for Deep Belief Nets. - Neural Computation, Vol. 18, 2006, No 7, 1527-1554.10.1162/neco.2006.18.7.1527Search in Google Scholar

2. Vincent, P., H. Larochelle, I. Lajoie, Y. Bengio, P. Manzagol. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. - The Journal of Machine Learning Research, Vol. 11, 2010, 3371-3408.Search in Google Scholar

3. Lee, H., C. Ekanadham, A. Ng. Sparse Deep Belief Net Model for Visual Area V2. - Advances in Neural Information Processing Systems, Vol. 20, 2008, 873-880.Search in Google Scholar

4. Nasse, F., C. Thurau, G. Fink. Face Detection Using Gpu-Based Convolutional Neural Networks. - Computer Analysis of Images and Patterns, 2009, 83-90.10.1007/978-3-642-03767-2_10Search in Google Scholar

5. Le, Q., R. Monga, M. Devin, G. Corrado, K. Chen, M. Ranzato, J. Dean, A. Ng. Building High-Level Features Using Large Scale Unsupervised Learning. - ArXiv Preprint ArXiv:1112.6209, 2011.Search in Google Scholar

6. Raina, R., A. Madhavan, A. Ng. Large-Scale Deep Unsupervised Learning Using Graphics Processors. - In: Proc. of 26th Annual International Conference on Machine Learning, Vol. 382, ACM, 2009, 873-880.10.1145/1553374.1553486Search in Google Scholar

7. Ly, D., P. Chow. A Multi-fpga Architecture for Stochastic Restricted Boltzmann Machines, in Field Programmable Logic and Applications. 2009. FPL 2009. - In: International Conference on. IEEE, 2009, 168-173.Search in Google Scholar

8. Chen, Tianshi, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, Olivier Temam. DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning. - In: Proc. of 19th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’14), 2014.Search in Google Scholar

9. Savich, A., M. Moussa, S. Areibi. The Impact of Arithmetic Representation on Implementing mlp-bp on fpgas: A Study. - IEEE Transactions on Neural Networks, Vol. 18, 2007, No 1, 240-252.10.1109/TNN.2006.883002Search in Google Scholar

10. Draghici, S. On the Capabilities of Neural Networks Using Limited Precision Weights. - Neural Networks, Vol. 15, 2002, No 3, 395-414.10.1016/S0893-6080(02)00032-1Search in Google Scholar

11. Savich, A., M. Moussa. Resource Efficient Arithmetic Effects on rbm Neural Network Solution Quality Using mnist. - In: International Conference on Reconfigurable Computing and FPGAs, Cancun, Mexico, 30 November - 2 December 2011, 35-40.10.1109/ReConFig.2011.79Search in Google Scholar

12. Jiang, Jingfei, Rongdong Hu, et al. Accuracy Evaluation of Deep Belief Networks with Fixed-Point Arithmetic. - Computer Modelling & New Technologies, Vol. 6, 2014.Search in Google Scholar

13. Kim, S., P. McMahon, K. Olukotun. A Large-Scale Architecture for Restricted Boltzmann Machines. - In: Proc. of 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines, Charlotte, North Carolina, 2-4 May 2010, 201-208.10.1109/FCCM.2010.38Search in Google Scholar

14. Le, Ly D., P. Chow. High-Performance Reconfigurable Hardware Architecture for Restricted Boltzmann Machines. - IEEE Transactions on Neural Networks, Vol. 21, 2010, No 11, 1780-1792.10.1109/TNN.2010.207348120858578Search in Google Scholar

15. Lee, H., A. Battle, R. Raina et al. Efficient Sparse Coding Algorithms. - Advances in Neural Information Processing Systems, 2006, 801-808.Search in Google Scholar

16. Hosmer, JrD. W., S. Lemeshow. Applied Logistic Regression. John Wiley & Sons, 2004.10.1002/0470011815.b2a10030Search in Google Scholar

eISSN:
1314-4081
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Computer Sciences, Information Technology