Acceso abierto

A degenerate version of hypergeometric Bernoulli polynomials: announcement of results

 y   
12 oct 2024

Cite
Descargar portada

This article explores some properties of degenerate hypergeometric Bernoulli polynomials, which are defined through the following generating function tmeλx(t)eλx(t)-l=0m-1(1)l,λtll!=n=0Bn,λ[m-1](x)tnn!,|t|<min{2π,1|λ|},λ\{0}. {{{t^m}e_\lambda ^x\left( t \right)} \over {e_\lambda ^x\left( t \right) - \sum\nolimits_{l = 0}^{m - 1} {\left( 1 \right)l,\lambda{{{t^l}} \over {l!}}} }} = \sum\limits_{n = 0}^{^\infty } {B_{n,\lambda }^{\left[ {m - 1} \right]}} \left( x \right){{{t^n}} \over {n!}},\,\,\,\,\left| t \right| < \min \left\{ {2\pi ,{1 \over {\left| \lambda \right|}}} \right\},\lambda \in \mathbb{R}\backslash \left\{ 0 \right\}. We deduce their associated summation formulas and their corresponding determinant form. Also we focus our attention on the zero distribution of such polynomials and perform some numerical illustrative examples, which allow us to compare the behavior of the zeros of degenerate hypergeometric Bernoulli polynomials with the zeros of their hypergeometric counterpart. Finally, using a monomiality principle approach we present a differential equation satisfied by these polynomials.

Idioma:
Inglés
Calendario de la edición:
1 veces al año
Temas de la revista:
Matemáticas, Matemáticas numéricas y computacionales, Matemáticas aplicadas