Acceso abierto

Deep learning based non-intrusive load monitoring with low resolution data from smart meters

 y   
11 oct 2022

Cite
Descargar portada

A detailed knowledge of the energy consumption and activation status of the electrical appliances in a house is beneficial for both the user and the energy supplier, improving energy awareness and allowing the implementation of consumption management policies through demand response techniques. Monitoring the consumption of individual appliances is certainly expensive and difficult to implement technically on a large scale, so non-intrusive monitoring techniques have been developed that allow the consumption of appliances to be derived from the sole measurement of the aggregate consumption of a house. However, these methodologies often require additional hardware to be installed in the domestic system to measure total energy consumption with high temporal resolution. In this work we use a deep learning method to disaggregate the low frequency energy signal generated directly by the new generation smart meters deployed in Italy, without the need of additional specific hardware. The performances obtained on two reference datasets are promising and demonstrate the applicability of the proposed approach.

Idioma:
Inglés
Calendario de la edición:
1 veces al año
Temas de la revista:
Matemáticas, Matemáticas numéricas y computacionales, Matemáticas aplicadas