Acceso abierto

A Continuous–Time Markov Chain Modeling Cancer–Immune System Interactions

Communications in Applied and Industrial Mathematics's Cover Image
Communications in Applied and Industrial Mathematics
Special Issue on Mathematical modelling for complex systems: multi-agents methods. Guest Editor: Elena De Angelis

Cite

1. A. R. A. Anderson and P. K. Maini, Special issue: Mathematical oncology, Bull. Math. Biol., vol. 280, pp. 945{953, 2018.10.1007/s11538-018-0423-5Search in Google Scholar

2. P. M. Altrock, L. L. Liu, and F. Michor, The mathematics of cancer: integrating quantitative models, Nat. Rev. Cancer, vol. 15, pp. 730{745, 2015.10.1038/nrc4029Search in Google Scholar

3. M. P. Little, Cancer models, genomic instability and somatic cellular darwinian evolution, Biology Direct, vol. 5, pp. 1{19, 2010.10.1186/1745-6150-5-19Search in Google Scholar

4. A. Konstorum, A. T. Vella, A. J. Adler, and R. C. Laubenbacher, Addressing current challenges in cancer immunotherapy with mathematical and computational modelling, J. R. Soc. Interface, vol. 14,p. 20170150, 2017.10.1098/rsif.2017.0150Search in Google Scholar

5. M. Lachowicz, Individually-based Markov processes modeling nonlinear systems in mathematical biology, Nonlinear Anal. Real World Appl., vol. 12, pp. 2396{2407, 2011.10.1016/j.nonrwa.2011.02.014Search in Google Scholar

6. J. Banasiak and M. Lachowicz, Methods of small parameter in mathematical biology. Basel: Birkhauser, 2014.10.1007/978-3-319-05140-6Search in Google Scholar

7. N. Bellomo, A. Bellouquid, and E. De Angelis, The modelling of immune competition by generalized kinetic (boltzmann) models: review and research perspectives, Math. Comput. Modelling, vol. 37,pp. 65{86, 2003.10.1016/S0895-7177(03)80007-9Search in Google Scholar

8. A. Bellouquid, E. De Angelis, and D. Knopoff, From the modeling of the immune hallmarks of cancerto a black swan in biology, Math. Models Methods Appl. Sci., vol. 23, pp. 949{978, 2013.10.1142/S0218202512500650Search in Google Scholar

9. E. De Angelis, On the mathematical theory of post-darwinian mutations, selection, and evolution, Math. Models Methods Appl. Sci, vol. 24, pp. 2723{2742, 2014.10.1142/S0218202514500353Search in Google Scholar

10. N. Bellomo, Modeling Complex Living Systems - A Kinetic Theory and Stochastic Game Approach. Basel: Birkhauser, 2008.Search in Google Scholar

11. N. Bellomo, A. Bellouquid, L. Gibelli, and N. Outada, A Quest Towards a Mathematical Theory of Living Systems. Basel: Birkhaauser, 2017.10.1007/978-3-319-57436-3Search in Google Scholar

12. N. Bellomo, P. Degond, and E. Tadmor, eds., Active Particles Volume 1 - Advances in Theory, Models, and Applications. Basel: Birkhaauser, 2017.10.1007/978-3-319-49996-3Search in Google Scholar

13. A. D. Wentzell, A course in the theory of stochastic processes. McGraw-Hill International, 1981.Search in Google Scholar

14. D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, vol. 44, pp. 646{674, 2011.10.1016/j.cell.2011.02.01321376230Search in Google Scholar

15. A. Lasota and J. A. Yorke, Exact dynamical systems and the frobenius-perron operator, Trans. Amer. Math. Soc., vol. 273, pp. 375{384, 1982.10.1090/S0002-9947-1982-0664049-XSearch in Google Scholar

16. R. Rudnicki, Models of population dynamics and their applications in genetics, in From genetics tomathematics (M.Lachowicz and J. Mi_ekisz, eds.), pp. 103-147, New Jersey: World Sci., 2009.10.1142/9789812837257_0004Search in Google Scholar

17. M. Lachowicz, A class of microscopic individual models corresponding to the macroscopic logistic growth, Math. Methods Appl. Sci., vol. 41, pp. 8446{8454, 2018.10.1002/mma.4680Search in Google Scholar

18. M. Lachowicz, A class of individual-based models, BIOMATH, vol. 7, p. 1804127, 2018.10.11145/j.biomath.2018.04.127Search in Google Scholar

19. N. Bellomo and B. Carbonaro, Toward a mathematical theory of living system focusing on developmental biology and evolution: A review and prospectives, Physics of Life Reviews, vol. 8, pp. 1{18, 2011.10.1016/j.plrev.2010.12.001Search in Google Scholar

20. S. De Lillo and N. Bellomo, On the modeling of collective learning dynamics, Appl. Math. Lett., vol. 24, pp. 1861{1866, 2011.10.1016/j.aml.2011.05.007Search in Google Scholar

21. F. Michor, Y. Iwasa, and M. A. Nowak, Dynamics of cancer progression, Nature Reviews Cancer, vol. 4, pp. 197{205, 2004.10.1038/nrc1295Search in Google Scholar

22. P. C. Nowell, Tumor progression: a brief historical perspective, Seminars in Cancer Biology, vol. 12, pp. 261{266, 2002.10.1016/S1044-579X(02)00012-3Search in Google Scholar

23. R. A. Gatenby and T. L. Vincent, Evolutionary model of carcinogenesis, Cancer Research, vol. 63, pp. 6212{1620, 2003.Search in Google Scholar

24. L. Arlotti, N. Bellomo, and M. Lachowicz, Kinetic equations modelling population dynamics, Trans-port Theory Statist. Phys., vol. 29, pp. 125{139, 2000.10.1080/00411450008205864Search in Google Scholar

25. M. Lachowicz, Links between microscopic and macroscopic descriptions, in Lecture Notes Math. 1940, Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic (J. Banasiak, V. Capasso, M. A. J. Chaplain, M. Lachowicz, and J. Miekisz, eds.), pp. 201{268, Berlin: Springer, 2008.10.1007/978-3-540-78362-6_4Search in Google Scholar

eISSN:
2038-0909
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics