Acceso abierto

Free-living bacteria of the genus Azotobacter – significance, mechanisms of action and practical use in crop production and sustainable agriculture

  
04 abr 2025

Cite
Descargar portada

Aasfar A., Bargaz A., Yaakoubi K., Hilali A., Bennis I., Zeroual Y., Kadmiri I.M., 2021. Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in Microbiology, 12: 1-19, doi: 10.3389/fmicb.2021.628379. Search in Google Scholar

Adamczyk B., Godlewski M., 2010. Various strategies of nitrogen by plants. Kosmos, 102: 211-222. (in Polish + summary in English) Search in Google Scholar

Ahmadi-Rad S., Gholamhoseini M., Ghalavand A., Asgharzadeh A., Dolatabadian A., 2016. Foliar application of nitrogen fixing bacteria increases growth and yield of canola grown under different nitrogen regimes. Rhizosphere, 2: 34-37, doi: 10.1016/j.rhisph.2016.08.006. Search in Google Scholar

Akinrinlola R.J., Yuen G.Y., Drijber R.A., Adesemoye A.O., 2018. Evaluation of Bacillus strains for plant growth promotion and predictability of efficacy by in vitro physiological traits. International Journal of Microbiology, 5686874, doi: 10.1155/2018/5686874. Search in Google Scholar

Akram M., Rizvi R., Sumbul A., Ansari R.A., Mahmood I., 2016. Potential role of bio-inoculants and organic matter for the management of root-knot nematode infesting chickpea. Cogent Food and Agriculture, 2(1): 1183457, doi: 10.1080/23311932.2016.1183457. Search in Google Scholar

Aloo B.N., Tripathi V., Makumba B.A., Mbega E.R., 2022. Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Frontiers in Plant Science, 13, doi: 10.3389/fpls.2022.1002448. Search in Google Scholar

Andjelković S., Vasića T., Radovića J., Babića S., Markovića J., Zornića V., Djurić S., 2018. Abundance of Azotobacter in the soil of natural and artificial grasslands. Soil Science Society of Serbia, pp. 172-175. Search in Google Scholar

Ansari M.F., Tipre D.R., Dave S.R., 2015. Efficiency evaluation of commercial liquid biofertilizers for growth of Cicer aeritinum (chickpea) in pot and field study. Biocatalysis and Agricultural Biotechnology, 4: 17-24, doi:10.1016/j. bcab.2014.09.010. Search in Google Scholar

Ansari R.A., Mahmood I., 2019. Plant Health Under Biotic Stress: Volume 1: Organic Strategies: Volume 1: Springer Singapore, ISBN: 978-981-13-6042-8, doi:10.1007/978-981-13-6043-5. Search in Google Scholar

Archana D.S., Nandish M.S., Savalagi V.P., Alagawadi A.R., 2013. Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet – A Quarterly Journal of Life Sciences, 10: 248-257. Search in Google Scholar

Arora M., Saxena P., Abdin M.Z., Varma A., 2018. Interaction between Piriformospora indica and Azotobacter chroococcum governs better plant physiological and biochemical parameters in Artemisia annua L. plants grown under in vitro conditions. Symbiosis, 75: 103-112, doi: 10.1007/s13199-017-0519-y. Search in Google Scholar

Aseri G.K., Jain N., Panwar J., Rao A.V., Meghwal P.R., 2008. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in India Thar Desert. Scientia Horticulturae, 117(2): 130-135, doi:10.1016/j.scienta.2008.03.014. Search in Google Scholar

Aquilanti L., Favilli F., Clementi F., 2004a. Comparison of different strategies for isolation and preliminary identification of Azotobacter from soil samples. Soil Biology and Biochemistry, 36: 1475-1483, doi: 10.1016/j.soilbio.2004.04.024. Search in Google Scholar

Aquilanti L., Mannazzu I., Papa R., Cavalca L., Clementi F., 2004b. Amplified ribosomal DNA restriction analysis for the characterization of Azotobacteraceae: a contribution to the study of these free-living nitrogen-fixing bacteria. Journal of Microbiological Methods, 57: 197-206, doi: 10.1016/j.mimet.2004.01.006. Search in Google Scholar

Aung A., Sev T.M., Mon A.A., San Yu S., 2020. Detection of abiotic stress tolerant Azotobacter species for enhancing plant growth promoting activities. Journal of Scientific and Innovative Research, 9: 48-53, doi: 10.31254/jsir.2020.9203. Search in Google Scholar

Baars O., Zhang X., Morel F.M., Seyedsayamdost M.R., 2016. The siderophores metabolome of Azotobacter vinelandii. Applied and Environmental Microbiology, 82(1): 27-39, doi: 10.1128/AEM.03160-15. Search in Google Scholar

Baars O., Zhang X., Gibson M.I., Stone A.T., Morel F.M., Seyedsayamdost M.R., 2018. Crochelins: siderophores with an unprecedented iron-chelating moiety from the nitrogen-fixing bacterium Azotobacter chroococcum. Angewandte Chemie International Edition, 130: 545-550, doi: 10.1002/anie.201709720. Search in Google Scholar

Bag P.B., Panda P., Paramanik B., Mahato B., Choudhury A., 2017. Atmospheric Nitrogen Fixing Capacity of Azotobacter Isolate from Cooch Behar and Jalpaiguri Districts Soil of West Bengal, India. International Journal of Current Microbiology and Applied Sciences, 6(3): 1775-1788, doi:10.20546/ijcmas.2017.603.204 Search in Google Scholar

Bagyaraj D.J., Menge J.A., 1978. Interaction between a VA mycorrhiza and Azotobacter and their effects on rhizosphere microflora and plant growth. New Phytologist, 80(3): 567-573. Search in Google Scholar

Baj J., Markiewicz Z., 2007. Biologia molekularna bakterii. Wydawnictwo Naukowe PWN, Warszawa, pp. 141. Search in Google Scholar

Barakat M.A.S., Gabr S.M., 1998. Effect of different biofertilizer types and nitrogen fertilizers levels on tomato plants. Alexandria Journal of Agricultural Research, 43(1): 149-160. Search in Google Scholar

Baral B.R., Adhikari P., 2013. Effect of Azotobacter on growth and yield of maize. SAARC Journal of Agriculture, 11(2): 141-147, doi:10.3329/sja.v11i2.18409 Search in Google Scholar

Behl R.K., Sharma H., Kumar V., Narula N., 2003. Interactions amongst mycorrhiza, Azotobacter chroococcum and root characteristics of wheat varieties. Journal of Agronomy and Crop Science, 189(3): 151-155, doi:10.1046/j.1439-037X.2003.00026.x Search in Google Scholar

Bellenger J.P., Wichard t., Kustka A.B., Kraepiel A.M.L., 2008. Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores. Nature Geoscience, 1(4): 243-246, doi:10.1038/ngeo161 Search in Google Scholar

Ben Mahmud M.T., Ferjani E.A., 2018. Influence of soil pH on Azotobacter population with using microbiological characteristics as bio-measurement in arable lands of Tripoli N.W. Libya. Al-Mukhtar Journal of Sciences, 33(2): 146-154. doi:10.54172/mjsc.v33i2.180 Search in Google Scholar

Bjelić D., Marinković J., Tintor B., Tančić Živanov S., Nastasic A., Mrkovacki N., 2015. Screening of Azotobacter isolates for PGP properties and antifungal activity. Zbornic Matice Srpske Za Prirodne Nauke, 65–72, doi:10.2298/ZMSPN1529065B Search in Google Scholar

Bopaiah B.M., Abdul Khader K.B., 1989. Effect of biofertilizers on growth of black pepper (Piper nigrum). Indian Journal of Agricultural Science, 59: 682-683. Search in Google Scholar

Brown., M.E., Jackson R.M., Burlingham S.K., 1968. Growth and effects of bacteria introduced into soil. The Ecology of Soil Bacteria, 531-551. Search in Google Scholar

Bunas A., Tkach E., Dvoretsky V., Dvoretska O., 2022. Efficiency of using biosystem POWER, KS (BioSistem POWER, SC) preparation to accelerate the destruction of post-harvest residues. Agroecological Journal, 3: 119-125, doi: 10.33730/2077-4893.3.2022.266417. Search in Google Scholar

Calvo P., Nelson L., Kloepper J., 2014. Agricultural uses of plant biostimulants. Plant and Soil, 383(1-2): 3-41, doi:10.1007/s11104-014-2131-8. Search in Google Scholar

Chetverikov S.P., Loginov O.N., 2008. New metabolites of Azotobacter vinelandii exhibiting antifungal activity. Microbiology, 78(4): 428-432, doi:10.1134/S0026261709040055. Search in Google Scholar

Das A.C., Saha D., 2007. Effect of diazotrophs on the mineralization of organic nitrogen in the rhizosphere soils of rice (Oryza sativa). Journal of Crop and Weed, 3: 47-51. Search in Google Scholar

Dash B., Soni R., 2018. Evaluation of stress tolerance of Azotobacter isolates. Biologija, 64(1): 82-93, doi:10.6001/biologija.v64i1.3662. Search in Google Scholar

Dąbrowska G., Hrynkiewicz K., Janczak K., Żurańska M., 2014. Modified soil bacteria and their potential application to improving fitoremediation of trace metal-contaminated environment. Ochrona Środowiska, 36(1): 21–26. (in Polish + summary in English) Search in Google Scholar

Dąbrowska G., Zdziechowska E., Hrynkiewicz K., 2016. Evaluation of Potential Suitability of Rhizobacteria for Phytodesalination of Soils. Ochrona Środowiska, 38(3): 9-14. (in Polish + summary in English) Search in Google Scholar

Debojyoti R., Manibrata P., Sudip K.B., 2014. A Review on The Effects of Biofertilizers and Biopesticides on Rice and Tea Cultivation and Productivity. International Journal of Science, Engineering and Technology, 2(8): 96-106. Search in Google Scholar

Demange P., Wendenbaum S., Bateman A., Dell A., Meyer J.M., Abdallah M.A., 1986. Bacterial siderophores: structures of pyoverdins and related compounds. pp. 131-147. In: Iron, Siderophores, and Plant Diseases; eds.: Swinburne T.R.; Plenum Press, New York. Search in Google Scholar

Diep C.N., Hieu N., 2013. Phosphate and potassium solubilizing bacteria from weathered materials of denatured rock mountain, Ha Tien, Kién Giang province Vietnam. American Journal of Life Sciences, 1(3): 88-92, doi: 10.11648/j. ajls.20130103.12. Search in Google Scholar

El_Komy M.H., Hassouna M.G., Abou-Taleb E.M., Al-Sarar A.S., Abobakr Y., 2020. A mixture of Azotobacter, Azospirillum, and Klebsiella strains improves root-rot disease complex management and promotes growth in sunflowers in calcareous soil. European Journal of Plant Pathology, 156: 713-726. doi: 10.1007/s10658-019-01921-w. Search in Google Scholar

El-sayed S., Hassan H., El-Mogy M., 2014. Impact of Bio- and organic fertilizers on potato yield, quality and tuber weight loss after harvest. Potato Research, 58: 67-81, doi: 10.1007/s11540-014-9272-2. Search in Google Scholar

Esmailpour A., Hassanzadehdelouei M., Madani A., 2013. Impact of livestock manure, nitrogen and biofertilizer (Azotobacter) on yield and yield components wheat (Triticum Aestivum L.). Cercetari Agronomice in Moldova, 46(2): 5-15, doi: 10.2478/v10298-012-0079-5. Search in Google Scholar

Geng Y., Cao G., Wang L., Wang S., 2019. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLOS One, 14(7), e0219512, doi: 10.1371/journal.pone.0219512. Search in Google Scholar

Glick B.R., 2012. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 963401, doi:10.6064/2012/963401. Search in Google Scholar

Gothandapani S., Sekar S., Padaria J.C., 2017. Azotobacter chroococcum: Utilization and potential use for agricultural crop production: An overview. International Journal of Advanced Research in Biological Sciences, 4(3): 35-42, doi:10.22192/IJARBS.2017.04.03.004. Search in Google Scholar

Hafez M., Elbarbary T.A., Ibrahim I., Abdel-Fatah Y., 2016. Azotobacter vinelandii evaluation and optimization of Abu Tartur Egyptian phosphate ore dissolution. Saudi Journal of Pathology and Microbiology, 1: 80-93, doi: 10.21276/sjpm.2016.1.3.2. Search in Google Scholar

Hakeem K.R., Sabir M., Ozturk M., Akhtar M.S., Ibrahim F.H., 2017. Nitrate and nitrogen oxides: sources, health effects and their remediation. Reviews of Environmental Contamination and Toxicology, 242: 183-217. doi: 10.1007/398_2016_11. Search in Google Scholar

Hayat R., Ali S., Amara U., Khalid R., Ahmed I., 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology, 60(4): 579-598. Search in Google Scholar

Herridge D.F., Peoples M.B., Boddey R.M., 2008. Global imputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311(1):1-18, doi: 10.1007/s11104-008-9668-3. Search in Google Scholar

Hindersah R., Nuraniya Kamaluddin N., Samanta S., Banerjee S., Sarkar S., 2020. Role and perspective of Azotobacter in crops production. SAINS TANAH – Journal of Soil Science and Agroclimatology, 17(2): 170-179, doi: 10.20961/stjssa.v17i2.45130. Search in Google Scholar

Huyer M., Page W.J., 1988. Zn2+ increases siderophores production in Azotobacter vinelandii. Applied and Environmental Microbiology, 54(11): 2625-2631. Search in Google Scholar

Iswaran V., Sen A., 1960. Mahua (Modhuca indica) cake as a carrier of ammonia to soil. Journal of Scientific and Industrial Research, 19C: 127. Search in Google Scholar

Jaipaul S., Dixit A., Sharma A., 2011. Growth and yield of capsicum (Capsicum annum) and garden pea (Pisum sativum) as influenced by organic manures and biofertilizers. Indian Journal of Agricultural Sciences, 81: 637-642. Search in Google Scholar

Jensen V., Petersen E.J., 1995. Taxonomic studies on Azotobacter chroococcum Bejjerinck and Azotobacter beijerinckii Lipman. J. R. Vet. Agric. Coll., 84: 107-126. Search in Google Scholar

Jnawali A.D., Ojha R.B., Marahatta S., 2015. Role of Azotobacter in soil fertility and sustainability – An review. Advances in Plants and Agriculture Research, 2(6): 1-5, doi: 10.15406/apar.2015.02.00069. Search in Google Scholar

Kandil A.A., El-Hindi M.H., Badawi M.A., ElMorarsy S.A., Kalboush F.A., 2011. Response of wheat to rates of nitrogen, biofertilizers and land leveling. Crop and Environment, 2(1): 46-51, doi: 10.3923/ajcs.2013.200.208. Search in Google Scholar

Kennedy I.R., Tchan Y.T., 1992. Biological nitrogen fixation in non-leguminous field crops: recent advances. Plant and Soil, 141(1-2): 93-118. Search in Google Scholar

Khan Z., Tiyagi S.A., Mahmood I., Rizvi R., 2012. Effects of N fertilization, organic matter and biofertilizers on the growth and yield of chilli in relation to management of plant-parasitic nematodes. Turkish Journal of Botany, 36(1): 73-81, doi:10.3906/bot-1009-60. Search in Google Scholar

Kizilkaya R., 2009. Nitrogen fixation capacity of Azotobacter spp. strains isolated from soils in different ecosystems and relationship between them and the microbiological properties of soils. Journal of Environmental Biology, 30(1): 73-82. Search in Google Scholar

Kozłowska-Burdziak M., 2019. Conditions for the food security of Poland (with special consideration of the Podlasie Voivodeship). Optimum Economic Studies, 3(97): 33-48, doi: 10.15290/oes.2019.03.97.03. (in Polish + summary in English) Search in Google Scholar

Kraepiel A.M.L., Bellenger J.P., Wichard T., Morel F.M., 2009. Multiple roles of siderophores in free-living nitrogen-fixing bacteria. BioMetals, 22(4): 573-581, doi: 10.1007/s10534-009-9222-7. Search in Google Scholar

Kumar A., Kumar K., Kumar P., Maurya R., Prasad S., Singh S.K., 2014. Production of indole acetic acid by Azotobacter strains associated with mungbean. Plant Archives, 14(1): 41-42. Search in Google Scholar

Kumari S., Chourasia S.K., Singh U., Rajnikant, 2017. Azotobacter: Its role in sustainable agriculture. New Agriculturist, 28(2): 485-492. Search in Google Scholar

Lenart A., Chmiel M.J., 2008. Wpływ wybranych jonów metali ciężkich na bakterie glebowe z rodzaju Azotobacter asymilujące azot atmosferyczny. ss. 199-205. In: Przemiany środowiska naturalnego a rozwój zrównoważony; red.: Kotarba M.J.; Wydawnictwo TBPŚ GEOSFERA, Kraków. Search in Google Scholar

Lenart A., 2012. Occurrence, characteristics, and genetic diversity of Azotobacter chroococcum in various soils of southern Poland. Polish Journal of Environmental Studies, 21(2): 415-424. Search in Google Scholar

Limmer C., Drake H.L., 1996. Non-symbiotic N2-fixation in acidic and pH-neutral forest soils: aerobic and anaerobic differentials. Soil Biology and Biochemistry, 28(2): 177-183. Search in Google Scholar

Mahato S., Kafle A., 2018. Comparative study of Azotobacter with or without other fertilizers on growth and yield of wheat in Western hills of Nepal. Annals of Agrarian Science, 16: 250-256, doi: 10.1016/j.aasci.2018.04.004. Search in Google Scholar

Martinez-Espinosa R. M., Cole J. A., Richardson D. J., Wart-mough N. J., 2011. Enzymology and ecology of the nitrogen cycle. Biochemical Society Transactions, 39(1): 175-178, doi: 10.1042/BST0390175. Search in Google Scholar

Martyniuk S., 2008. The importance of biological fixation of atmospheric nitrogen in ecological agriculture. Journal of Research and Applications in Agricultural Engineering, 53(4): 9-14. (in Polish + summary in English) Search in Google Scholar

Martyniuk S., 2010. Production of microbial preparations: symbiotic bacteria of legumes as an example. Journal of Research and Applications in Agricultural Engineering, 55(4): 20-23. (in Polish + summary in English) Search in Google Scholar

Mazinani Z., Asgharzadeh A., 2014. Genetic diversity of Azotobacter strains isolated from soils by amplified ribosomal DNA restriction analysis. Cytology and Genetics, 48(5): 26-35, doi: 10.3103/S0095452714050041. Search in Google Scholar

Mazid M., Khan T.A., 2015. Future of bio-fertilizers in Indian agriculture: An Overview. International Journal of Agricultural and Food Research, 3(3): 10-23, doi: 10.24102/ijafr. v3i3.132. Search in Google Scholar

Milošević N., Tintor B., Protić R., Cvijanović G., Dimitrijević T., 2012. Effect of inoculation with Azotobacter chroococcum on wheat yield and seed quality. Romanian Biotechnologicals Letters, 17(3): 7352–7357. Search in Google Scholar

Mirzakhani M., Ardakani M.R., Rejali F., Rad A.H.S., Miransari M., 2014. Safflower (Carthamus tinctorius L.) oil content and yield components as affected by co-inoculation with Azotobacter chroococcum and Glomus intraradices at various N and P levels in a dry climate. pp. 153-164. In: Use of Microbes for the Alleviation of Soil Stresses: Volume 2: Alleviation of Soil Stress by PGPR and Mycorrhizal Fungi; eds.: Miransari M.; Springer, New York, doi: 10.1007/978-1-4939-0721-2_9. Search in Google Scholar

Mohamed H., Almaroai Y., 2016. Effect of Inoculated Azotobacter chroococcum and Soil Yeasts on Growth, N-uptake and Yield of Wheat (Triticum aestivum) under Different Levels of Nitrogen Fertilization. International Journal of Soil Science, 11: 102-107, doi: 10.3923/ijss.2016.102.107. Search in Google Scholar

Mrkovacki N., Milic V., 2001. Use of Azotobacter chroococcum as potentially useful in agricultural application. Annals of Microbiology, 51(2): 145-158. Search in Google Scholar

Natywa M., Selwet M., Ambroży K., Pociejowska M., 2013. The effect of nitrogen fertilization and irrigation on the number of Azotobacter in the soil under maize at different stages of plant development. Polish Journal of Agronomy, 13: 53-58. (in Polish + summary in English) Search in Google Scholar

Nieto K.F., Frankenberger W., 1989. Biosynthesis of cytokinins by Azotobacter chroococcum. Soil Biology and Biochemistry, 21(7): 967-972. Search in Google Scholar

Nongthombam J., Kumar A., Sharma S., Ahmed S., 2021. Azotobacter: A complete Review. Bulletin of Environment Pharmacology and Life Sciences, 10(6): 72-79. Search in Google Scholar

Okon Y., Itzigsohn R., 1995. The development of Azospirillum as commercial inoculant for improving crop yields. Biotechnology Advances, 13: 415-424. Search in Google Scholar

Omer A., Emara H., Zaghloul R., Abdel M., Dawwam G., 2016. Potential of Azotobacter salinestris as plant growth promoting rhizobacteria under saline stress conditions. Research Journal of Pharmaceutical Biological and Chemical Sciences, 7(6): 2572-2583. Search in Google Scholar

Palanchét., Blanc S., Hennard C., Abdallah M.A., Albrecht-Gary A.M., 2004. Bacterial iron transport: coordination properties of azotobactin, the highly fluorescent siderophores of Azotobacter vinelandii. Inorganic Chemistry Journal, 43(3): 1137-1152, doi: 10.1021/ic034862n. Search in Google Scholar

Parmar N., Dadarwal K.R., 1999. Stimulation of nitrogen fixation and induction of flavonoid-like comounds by rhizobacteria. Journal of Applied Microbiology, 86(1): 35-44. Search in Google Scholar

Paśmionka I., 2017. Mikrobiologiczne przemiany azotu glebowego. Kosmos, 66: 185-192. Search in Google Scholar

Patil V., 2011. Production of indole acetic acid by Azotobacter sp. Recent Research in Science and Technology, 3(12): 14-16. Search in Google Scholar

Paul E.A., Clark F.E., 2000. Mikrobiologia i biochemia gleb. Red. Jędrych M.; Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej, Lublin, 400 pp. Search in Google Scholar

Paungfoo-Lonhienne C., Lonhienne T.G.A., Yeoh Y.K., Do-nose B.C., Webb R.I., Parsons J., Liao W., Sagulenko E., Lakshmanan P., Hugenholtz P., Schmidt S., Ragan M.A., 2016. Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. Scientific Reports, 6(1): 37389, doi: 10.1038/srep37389. Search in Google Scholar

Ponmurugan K., Sankaranarayanan A., Al-Dharbi N.A., 2012. Biological activities of plant growth promoting Azotobacter sp. isolated from vegetable crops rhizosphere soils. Journal of Pure and Applied Microbiology, 6(4): 1689-1698. Search in Google Scholar

Qessaoui R., Bouharroud R., Furze J.N., El Aalaoui M., Akroud H., Amarraque A., Van Vaerenbergh J., Tahzima R., Mayad E.H., Chebli B., 2019. Applications of New Rhizo-bacteria Pseudomonas Isolates in Agroecology via Fundamental Processes Complementing Plant Growth. Scientific Reports, 9(1): 12832, doi: 10.1038/s41598-019-49216-8. Search in Google Scholar

Rahman A., Baharlouei P., Yan Koh E.H., Pirvu D.G., Rehmani R., Arcos M., Puri S., 2024. A Comprehensive analysis of organic food: Evaluating nutritional value and impact on human health. Foods, 13, 208, doi: 10.3390/foods13020208. Search in Google Scholar

Ramakrishnan K., Selvakumar G., 2012. Effect of biofertilizers of growth and yield on tomato (Lycopersicum esculentum Mill.). International Journal of Research in Botany, 2(4): 20-23. Search in Google Scholar

Ritika B., Utpal D., 2014. Biofertilizer, a way towards organic agriculture: A review. African Journal of Microbiology Research, 8(24): 2332-2343, doi: 10.5897/AJMR2013.6374. Search in Google Scholar

Romero-Perdomo F., Abril J., Camelo M., Moreno-Galvan A., Pastrana I., Rojas-Tapias D., Bonilla R., 2017. Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization. Revista Argentina de Microbiologia, 49(4): 377-383, doi: 10.1016/j.ram.2017.04.006. Search in Google Scholar

Rubio E.J., Montecchia M.S., Tosi M., Cassán F.D.,Perticari A., Correa O.S., 2013. Genotypic Characterization of Azoto-bacteria Isolated from Argentinean Soils and Plant-Growth— Promoting Traits of Selected Strains with Prospects for Bio-fertilizer Production. The Scientific World Journal, 519603, doi: 10.1155/2013/519603. Search in Google Scholar

Saeed K., Ahmed S. A., Hassan I. A., Ahmed P. H., 2015. Effect of bio-fertilizer and chemical fertilizer on growth and yield in cucumber (Cucumis sativus L.) in green house condition. American-Eurasian Journal of Agricultural and Environmental Sciences, 15: 353-358. Search in Google Scholar

Sangeeth K.P., Bhai R.S., Srinivasan V., 2012. Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum I.) rhizosphere. Journal of Spices and Aromatic Crops, 21: 118-124. Search in Google Scholar

Saribay G.F., 2003. Growth and Nitrogen Fixationdynamics of Azotobacter chroococcum in Nitrogen- Free and OMW Containing Medium. Master’s thesis, Middle East Technical University, Ankara. Search in Google Scholar

Sarkar A., Mandal A. R., Prasad P. H., Maity T. K., Chandra B., Viswavidyalaya K., 2010. Influence of nitrogen and bio-fertilizer on growth and yield of cabbage. Journal of Crop and Weed, 6(2): 72-73. Search in Google Scholar

Sarma I., Phookan D. B., Boruah S., 2015. Influence of manures and biofertilizers on carrot (Daucus carota L.) cv. Early Nantes growth, yield and quality. Journal of Ecofriendly Agriculture, 10(1): 25-27. Search in Google Scholar

Savala C.E.N., Wiredu A.N., Chikoye D., Kyei-Boahen S., 2022. Prospects and Potential of Bradyrhizobium diazoefficiens Based Bio-Inoculants on Soybean Production in Different Agro-Ecologies of Mozambique. Frontiers in Sustainable Food Systems, 6: 908231, doi: 10.3389/fsufs.2022.908231. Search in Google Scholar

Shivprasad S., Page W.J., 1989. Catechol formation and melanization by Na –Dependent Azotobacter chroococcum: a protective mechanism for Aeroadaptation? Applied and Environmental Microbiology, 55: 1811-1817. Search in Google Scholar

Siddiqui A., Shivle R., Magodiya N., Tiwari K., 2014. Mixed effect of Rhizobium and Azotobacter as biofertilizer on nodulation and production of chick pea, Cicer arietinum. Bioscience Biotechnology Research Communications, 7(1): 46-49. Search in Google Scholar

Singh G., Biswas D.R., Marwaha.S., 2010. Mobilization of potassium from waste mica by plant growth promoting rhizo-bacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum): a hydroponics study under phytotron growth chamber. Journal of Plant Nutrition 33: 1236-1251, doi: 10.1080/01904161003765760. Search in Google Scholar

Singh A., Maji S., Kumar S., 2014. Effect of biofertilizers on yield and biomolecules of anti-cancerous vegetable broccoli. International Journal of Bio-resource and Stress Management, 5(2): 262, doi: 10.5958/0976-4038.2014.00565.X. Search in Google Scholar

Singh S.K., Sharma H. R., Shukla A., Singh U., Thakur A., 2015. Effect of biofertilizers and mulch on growth, yield and quality of tomato in mid-hills of Himachal Pradesh. International Journal of Farm Sciences, 5: 98-110. Search in Google Scholar

Sivasakthi S., Saranraj P., Sivasakthivelan P., 2017. Biological Nitrogen Fixation by Azotobacter sp. – A review. Indo- Asian Journal of Multidisciplinary Research, 3(5): 1274-1284, doi: 10.22192/iajmr.2017.3.5.6. Search in Google Scholar

Subedi R., Khanal A., Aryal K., Chhetri L., Kandel B., 2019. Response of Azotobacter in caulifower (Brassica oleracea L. var. botrytis) production at Lamjung, Nepal. Acta Scientifica Malaysia, 3: 17-20, doi: 10.26480/asm.01.2019.17.20. Search in Google Scholar

Sumbul A., Ansari R.A., Rizvi R., Mahmood I., 2020. Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi Journal of Biological Sciences, 27(12): 3634-3640, doi: 10.1016/j.sjbs.2020.08.004. Search in Google Scholar

Taller B.J., Wong T., 1988. Cytokinins in Azotobacter vinelandii culture medium. Applied and Environmental Microbiology, 55(1): 266-267. Search in Google Scholar

Tejera N., Lluch C., Martinez-Toledo M.V., Gonzalez-Lopez J., 2005. Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant and Soil., 270(1): 223-232, doi: 10.1007/s11104-004-1522-7. Search in Google Scholar

Tilak K.V.B.R., 1995. Vesicular-arbuscular myccorhizae and Azospirillum brasilense rhizocoenosis in pearl miller in semi-arid tropics. pp. 177-179. In: Proceedings of Third National Conference on Mycorrhiza; eds.: Adholeya A., Singh S. Search in Google Scholar

Tilak K., Sharma K.C., 2007. Does Azotobacter help in increasing the yield. Indian Farmers Digest, 9: 25-28. Search in Google Scholar

Tindale A.E., Mehrotra M., Ottem D., Page W.J., 2000. Dual regulation of catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative stress. Microbiology, 146(7), 1617–1626, doi: 10.1099/00221287-146-7-1617. Search in Google Scholar

Trncik Ch., Müller T., Franke P., Einsle O., 2022. Structural analysis of the reductase component anfH of iron-only nitrogenase from Azotobacter vinelandii. Journal of Inorganic Biochemistry, 227: 111690, doi: 10.1016/j.jinorgbio.2021.111690. Search in Google Scholar

Ueda Y., Konishi M., Yanagisawa S., 2017. Molecular basis of the nitrogen response in plants. Soil Science and Plant Nutrition, 63(4): 1-13, doi: 10.1080/00380768.2017.1360128. Search in Google Scholar

Vance C.P., Graham P.H., 1995. Nitrogen fixation in agriculture: application and perspectives, pp. 77-86. In: Nitrogen fixation: Fundamentals and applications. Current plant science and biotechnology in agriculture; eds.: Tikhonovich I.A., Provorov N.A., Newton W.E.; Springer, Dordrecht. Search in Google Scholar

Vikhe P.S., 2014. Azotobacter species as a natural plant hormone synthesizer. Research Journal of Recent Sciences 3 (IVC): 59-63, ISSN 2277-2502. Search in Google Scholar

Villa J.A., Ray E.E., Barney B.M., 2014. Azotobacter vinelandii siderophores can provide nitrogen to support the culture of the green algae Neochloris oleoabundans and Scenedesmus sp. BA032. FEMS Microbiology Letters, 351(1): 70-77, doi: 10.1111/1574-6968.12347. Search in Google Scholar

Vojinoviv Z., 1961. Microbiological properties of main types soil in Serbia for nitrogen cycling. Journal for Scientific Agricultural Research, 43: 3-25. Search in Google Scholar

Wani S.A., Chand S., Wani M.A., Ramzan M., Hakeem K.R., 2016. Azotobacter chroococcum – a potential biofertilizer in agriculture: an overview. pp. 333-348. In: Soil Science: Agricultural and Environmental Prospectives; eds.: Hakeem K.R., Akhtar J., Sabir M.; Springer, doi: 10.1007/978-3-319-34451-5. Search in Google Scholar

Wani S.P., Gopalakrishnan S., 2019. Plant growth-promoting microbes for sustainable agriculture. pp. 19-45. In: Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture, Springer, Singapore, doi: 10.1007/978-981-13-6790-8_2. Search in Google Scholar

Wichard T., Bellenger J.P., Morel F.M., Kraepiel A.M., 2009. Role of siderophores azotobactin in the bacterial acquisition of nitrogenase matal cofactors. Environmental Science and Technology, 43(19): 7218-7224, doi: 10.1021/es8037214. Search in Google Scholar

Wu S.C., Cao Z.H., Li Z.G., Cheung K.C., Wong M.H., 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125: 155-166, doi: 10.1016/j.geoderma.2004.07.003. Search in Google Scholar

Wu S.C., Luo Y.M., Cheung K.C., Wong M.H., 2006. Influence of bacteria on Pb and Zn speciation, mobility and bioavail-ability in soil: a laboratory study. Environmental Pollution, 144: 765-773, doi: 10.1016/j.envpol.2006.02022. Search in Google Scholar

Yadav A.S., Vashishat R.K., 1991. Associative effect of Brady-rhizobium and Azotobacter inoculation on nodulation, nitrogen fixation and yield of mungbean (Vigna radiate (L.) Wilczek). Indian Journal of Microbiology, 31(3): 297-299. Search in Google Scholar

Yasari E., Azadgoleh M.E., Mozafari S., Alashti M.R., 2009. Enhancement of growth and nutrient uptake of rapeseed (Bras-sica napus L.) by applying mineral nutrients and biofertilizers. Pakistan Journal of Biological Sciences, 12(2): 127-133. doi: 10.3923/pjbs.2009.127.133. Search in Google Scholar

Yousaf M., Li J., Lu J., Ren T., Cong R., Fahad S., Li X., 2017. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Scientific Reports, 7(1): 1-9, doi: 10.1038/s41598-017-01412-0. Search in Google Scholar

Yousefi S., Kartoolinejad D., Bahmani M., Naghdi R., 2017. Effect of Azospirillum lipoferum and Azotobacter chroococcum on germination and early growth of hopbush shrub (Dodonaea viscosa L.) under salinity stress. Journal of Sustainable Forest, 36(2): 107-120, doi: 10.1080/10549811.2016.1256220. Search in Google Scholar

Zahir Z.A, Asghar H.N., Akhtar M.J., Arshad M., 2005. Precursor (L-tryptophan) – inoculum (Azotobacter) interaction for improving yields and nitrogen uptake of maize. Journal of Plant Nutrition, 28: 805-817, doi: 10.1081/PLN-200055543. Search in Google Scholar

Zayadan B.K., Matorin D. N., Baimakhanova G. B., Bolathan K., Oraz G. D., Sadanov A. K., 2014. Promising microbial consortia for producing biofertilizers for rice fields. Micro-biology, 83(4): 391-397, doi: 10.1134/s0026261714040171. Search in Google Scholar

Zayed M.S., 2012. Improvement of growth and nutritional quality of Moringa oleifera using different biofertilizers. Annals of Agricultural Science, 57(1): 53-62, doi: 10.1016/j. aoas.2012.03.004. Search in Google Scholar

Zeffa D.M., Perini L.J., Silva M.B., de Sousa N.V., Scapim C.A., Oliveira A.L.M., de Azeredo Goncalves L.S., 2019. Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLOS One, 14(4), e0215332, doi:10.1371/journal.pone.0215332. Search in Google Scholar

Zulaika E., Solikhah F., Alami N.H., Kuswytasari N.D., Shovitri M., 2017. Viability of Azotobacter consortium in auxin production. In AIP Conference Proceedings (Vol. 1854, hal. 20041). AIP Publishing LLC, doi: 10.1063/1.4985432. Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
1 veces al año
Temas de la revista:
Ciencias de la vida, Botánica, Ecología