Acceso abierto

Beyond Parametric Bounds: Exploring Regional Unemployment Patterns Using Semiparametric Spatial Autoregression

 y   
10 oct 2024

Cite
Descargar portada

Anselin L., & Rey, S. J. (2014). Modern Spatial Econometrics in Practice. GeoDa Press LLC, Chicago. Search in Google Scholar

Basile, R., Durbán, M., Mínguez, R., María Montero, J., & Mur, J. (2014). Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities. Journal of Economic Dynamics and Control, 48, 229-245. https://doi.org/10.1016/j.jedc.2014.06.011 Search in Google Scholar

Basile, R., & Mínguez, R. (2018). Advances in Spatial Econometrics: Parametric vs. Semiparametric Spatial Autoregressive Models, In: Commendatore, P., Kubin, I., Bougheas, S., Kirman, A., Kopel, M., Bischi, G. (eds) The Economy as a Complex Spatial System., pp. 81-106, Springer Proceedings in Complexity. Springer. Search in Google Scholar

Chi, G., & Zhu, J. (2020). Spatial Regression Models for the Social Sciences. https://doi.org/10.4135/9781544302096 Search in Google Scholar

Eurostat. (2023). Regional statistics, available at https://ec.europa.eu/eurostat/web/regions/database (15 March 2023). Search in Google Scholar

Fahrmeir, L., Kneib, T., Lang, S., & Marx, B. D. (2021). Regression Models, Methods and Applications, Springer Berlin, Heidelberg. Search in Google Scholar

Formánek, T. (2019). Spatial econometric analysis with applications to regional macroeconomic dynamics. Habilitation Thesis, University of Economics, Prague. Search in Google Scholar

Geniaux, G., & Martinetti, D. (2018). A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models. Regional Science and Urban Economics, 72, 74-85. https://doi.org/10.1016/j.regsciurbeco.2017.04.001 Search in Google Scholar

Hastie, T., & Tibshirani, R. (1986). Generalized Additive Models. Statistical Science, 1(3). https://doi.org/10.1214/ss/1177013604 Search in Google Scholar

Hastie, T. J., Tibshirani, R. J. (1990). Generalized Additive Models, Chapman & Hall/CRC. Search in Google Scholar

Lung-Fei, L. (2022). Spatial Econometrics: Spatial Autoregressive Models, World Scientific Publishing Company, p. 896. Search in Google Scholar

Mínguez, R., Basile, R., & Durbán, M. (2022). An introduction to pspatreg: A new R package for semiparametric spatial autoregressive analysis. REGION, 9(2), R1-R15. https://doi.org/10.18335/region.v9i2.450 Search in Google Scholar

Pavlovčič-Prešeren, P., Stopar, B., & Sterle, O. (2019). Application of different radial basis function networks in the illegal waste dump-surface modelling. Central European Journal of Operations Research, 27(3), 783-795. https://doi.org/10.1007/s10100-018-0586-z Search in Google Scholar

Perperoglou, A., Sauerbrei, W., Abrahamowicz, M., & Schmid, M. (2019). A review of spline function procedures in R. BMC Medical Research Methodology, 19(1). https://doi.org/10.1186/s12874-019-0666-3 Search in Google Scholar

Wahyuni, S. A., Ratnawati, R., Indriyani, I., & Fajri, M. (2020). Spline Regression Analysis to Modelling The Open Unemployment Rate in Sulawesi. Natural Science: Journal of Science and Technology, 9(2). https://doi.org/10.22487/25411969.2020.v9.i2.15202 Search in Google Scholar

Wood, S. N. (2017). Generalized Additive Models: An Introduction with R, Second Edition (2nd ed.). Chapman and Hall/CRC. Search in Google Scholar

Wood, S. (2023). Mixed GAM Computation Vehicle with Automatic Smoothness Estimation, available at https://cran.r-project.org/web/packages/mgcv/mgcv.pdf (15 January 2024). Search in Google Scholar