This work is licensed under the Creative Commons Attribution 4.0 International License.
Anselin L., & Rey, S. J. (2014). Modern Spatial Econometrics in Practice. GeoDa Press LLC, Chicago.Search in Google Scholar
Basile, R., Durbán, M., Mínguez, R., María Montero, J., & Mur, J. (2014). Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities. Journal of Economic Dynamics and Control, 48, 229-245. https://doi.org/10.1016/j.jedc.2014.06.011Search in Google Scholar
Basile, R., & Mínguez, R. (2018). Advances in Spatial Econometrics: Parametric vs. Semiparametric Spatial Autoregressive Models, In: Commendatore, P., Kubin, I., Bougheas, S., Kirman, A., Kopel, M., Bischi, G. (eds) The Economy as a Complex Spatial System., pp. 81-106, Springer Proceedings in Complexity. Springer.Search in Google Scholar
Chi, G., & Zhu, J. (2020). Spatial Regression Models for the Social Sciences. https://doi.org/10.4135/9781544302096Search in Google Scholar
Eurostat. (2023). Regional statistics, available at https://ec.europa.eu/eurostat/web/regions/database (15 March 2023).Search in Google Scholar
Fahrmeir, L., Kneib, T., Lang, S., & Marx, B. D. (2021). Regression Models, Methods and Applications, Springer Berlin, Heidelberg.Search in Google Scholar
Formánek, T. (2019). Spatial econometric analysis with applications to regional macroeconomic dynamics. Habilitation Thesis, University of Economics, Prague.Search in Google Scholar
Geniaux, G., & Martinetti, D. (2018). A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models. Regional Science and Urban Economics, 72, 74-85. https://doi.org/10.1016/j.regsciurbeco.2017.04.001Search in Google Scholar
Hastie, T., & Tibshirani, R. (1986). Generalized Additive Models. Statistical Science, 1(3). https://doi.org/10.1214/ss/1177013604Search in Google Scholar
Hastie, T. J., Tibshirani, R. J. (1990). Generalized Additive Models, Chapman & Hall/CRC.Search in Google Scholar
Lung-Fei, L. (2022). Spatial Econometrics: Spatial Autoregressive Models, World Scientific Publishing Company, p. 896.Search in Google Scholar
Mínguez, R., Basile, R., & Durbán, M. (2022). An introduction to pspatreg: A new R package for semiparametric spatial autoregressive analysis. REGION, 9(2), R1-R15. https://doi.org/10.18335/region.v9i2.450Search in Google Scholar
Pavlovčič-Prešeren, P., Stopar, B., & Sterle, O. (2019). Application of different radial basis function networks in the illegal waste dump-surface modelling. Central European Journal of Operations Research, 27(3), 783-795. https://doi.org/10.1007/s10100-018-0586-zSearch in Google Scholar
Perperoglou, A., Sauerbrei, W., Abrahamowicz, M., & Schmid, M. (2019). A review of spline function procedures in R. BMC Medical Research Methodology, 19(1). https://doi.org/10.1186/s12874-019-0666-3Search in Google Scholar
Wahyuni, S. A., Ratnawati, R., Indriyani, I., & Fajri, M. (2020). Spline Regression Analysis to Modelling The Open Unemployment Rate in Sulawesi. Natural Science: Journal of Science and Technology, 9(2). https://doi.org/10.22487/25411969.2020.v9.i2.15202Search in Google Scholar
Wood, S. N. (2017). Generalized Additive Models: An Introduction with R, Second Edition (2nd ed.). Chapman and Hall/CRC.Search in Google Scholar
Wood, S. (2023). Mixed GAM Computation Vehicle with Automatic Smoothness Estimation, available at https://cran.r-project.org/web/packages/mgcv/mgcv.pdf (15 January 2024).Search in Google Scholar