Cite

Al-Hafedh, Y.S. and A. Alam (2007): Design and performance of an indigenous water recirculating aquaculture system for intensive production of Nile Tilapia, Oreochromis niloticus (L.), in Saudi Arabia. International Journal of Recirculating Aquaculture 8, 1–20.Al-HafedhY.S.AlamA.2007Design and performance of an indigenous water recirculating aquaculture system for intensive production of Nile Tilapia, Oreochromis niloticus (L.), in Saudi ArabiaInternational Journal of Recirculating Aquaculture812010.21061/ijra.v8i1.1415Search in Google Scholar

APHA (2005): Standard Methods for the Examination of Water and Wastewater. 21st ed., American Public Health Association, Washington, DC.APHA2005Standard Methods for the Examination of Water and Wastewater.21st ed.American Public Health AssociationWashington, DCSearch in Google Scholar

Arredondo-Figueroa, J.L., Núñez-García, L.G., Ponce-Palafox, J.T. and I. de Los Ángeles Barriga-Sosa (2015): Performance of Brooders, Fry and Growth of the Nile Tilapia (Oreochromis niloticus) Cultured in an Experimental Recirculating Aquaculture System. Agricultural Sciences 06, 1014–1022.Arredondo-FigueroaJ.L.Núñez-GarcíaL.G.Ponce-PalafoxJ.T.de Los Ángeles Barriga-SosaI.2015Performance of Brooders, Fry and Growth of the Nile Tilapia (Oreochromis niloticus) Cultured in an Experimental Recirculating Aquaculture SystemAgricultural Sciences061014102210.4236/as.2015.69096Search in Google Scholar

Badiola, M., Mendiola, D. and J. Bostock (2012): Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquacultural Engineering 51, 26–35.BadiolaM.MendiolaD.BostockJ.2012Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challengesAquacultural Engineering51263510.1016/j.aquaeng.2012.07.004Search in Google Scholar

Bartelme, R.P., Mclellan, S.L. and R.J. Newton (2017): Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing Archaea and comammox Nitrospira. Frontiers in Micro-biology 8, 101.BartelmeR.P.MclellanS.L.NewtonR.J.2017Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing Archaea and comammox NitrospiraFrontiers in Micro-biology810110.3389/fmicb.2017.00101527685128194147Search in Google Scholar

Chen, S., Ling, J. and J.P. Blancheton (2006): Nitrification kinetics of biofilm as affected by water quality factors. Aquacultural Engineering 34, 179–197.ChenS.LingJ.BlanchetonJ.P.2006Nitrification kinetics of biofilm as affected by water quality factorsAquacultural Engineering3417919710.1016/j.aquaeng.2005.09.004Search in Google Scholar

Christianson, L., Lepine, C., Tsukuda, S., Saito, K. and S. Summerfelt (2015): Nitrate removal effectiveness of fluidized sulfur-based autotrophic denitrification biofilters for recirculating aquaculture systems. Aquacultural Engineering 68, 10–18.ChristiansonL.LepineC.TsukudaS.SaitoK.SummerfeltS.2015Nitrate removal effectiveness of fluidized sulfur-based autotrophic denitrification biofilters for recirculating aquaculture systemsAquacultural Engineering68101810.1016/j.aquaeng.2015.07.002Search in Google Scholar

Colt, J. (2006): Water quality requirements for reuse systems. Aquacultural Engineering 34, 143–156.ColtJ.2006Water quality requirements for reuse systemsAquacultural Engineering3414315610.1016/j.aquaeng.2005.08.011Search in Google Scholar

Cristian, S., Benone, P., Neculai, P., Marilena, T., Victor, C. and T. Magdalena (2013): Preliminary research on the anammox process and control of nitrogen compounds in a recirculating aquaculture system. AACL Bioflux 6, 27–33.CristianS.BenoneP.NeculaiP.MarilenaT.VictorC.MagdalenaT.2013Preliminary research on the anammox process and control of nitrogen compounds in a recirculating aquaculture systemAACL Bioflux62733Search in Google Scholar

Dalsgaard, T., Canfield, D.E., Petersen, J., Thamdrup, B. and J. Acuña-González (2003): N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422, 606–608.DalsgaardT.CanfieldD.E.PetersenJ.ThamdrupB.Acuña-GonzálezJ.2003N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa RicaNature42260660810.1038/nature0152612686998Search in Google Scholar

Davidson, J., Good, C., Welsh, C., Brazil, B. and S. Summerfelt (2009): Heavy metal and waste metabolite accumulation and their potential effect on rainbow trout performance in a replicated water reuse system operated at low or high system flushing rates. Aquacultural Engineering 41, 136–145.DavidsonJ.GoodC.WelshC.BrazilB.SummerfeltS.2009Heavy metal and waste metabolite accumulation and their potential effect on rainbow trout performance in a replicated water reuse system operated at low or high system flushing ratesAquacultural Engineering4113614510.1016/j.aquaeng.2009.04.001Search in Google Scholar

Davidson, J., Good, C., Welsh, C. and S.T. Summerfelt (2014): Comparing the effects of high vs. Low nitrate on the health, performance, and welfare of juvenile rainbow trout Oncorhynchus mykiss within water recirculating aquaculture systems. Aquacultural Engineering 59, 30–40.DavidsonJ.GoodC.WelshC.SummerfeltS.T.2014Comparing the effects of high vs. Low nitrate on the health, performance, and welfare of juvenile rainbow trout Oncorhynchus mykiss within water recirculating aquaculture systemsAquacultural Engineering59304010.1016/j.aquaeng.2014.01.003Search in Google Scholar

Delong, D.P. and T.M. Losordo (2012): How to start a Biofilter. SRAC Publication - Southern Regional Aqua-culture Center 3, 1–4.DelongD.P.LosordoT.M.2012How to start a BiofilterSRAC Publication - Southern Regional Aqua-culture Center314Search in Google Scholar

Delong, D.P., Losordo, T.M. and J.E. Rakocy (2009): Tank culture of tilapia. Southern Regional Aquaculture Center 282.DelongD.P.LosordoT.M.RakocyJ.E.2009Tank culture of tilapiaSouthern Regional Aquaculture Center282Search in Google Scholar

Effendi, H., Wahyuningsih, S. and Y. Wardiatno (2017): The use of nile tilapia (Oreochromis niloticus) cultivation wastewater for the production of romaine lettuce (Lactuca sativa L. var. longifolia) in water recirculation system. Applied Water Science 7, 3055–3063.EffendiH.WahyuningsihS.WardiatnoY.2017The use of nile tilapia (Oreochromis niloticus) cultivation wastewater for the production of romaine lettuce (Lactuca sativa L. var. longifolia) in water recirculation systemApplied Water Science73055306310.1007/s13201-016-0418-zSearch in Google Scholar

Egli, K., Bosshard, F., Werlen, C., Lais, P., Siegrist, H., Zehnder, A.J.B. and J.R. van der Meer (2003): Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon. Microbial Ecology 45, 419–432.EgliK.BosshardF.WerlenC.LaisP.SiegristH.ZehnderA.J.B.van der MeerJ.R.2003Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbonMicrobial Ecology4541943210.1007/s00248-002-2037-5Search in Google Scholar

FAO (2018): The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome, Italy.FAO2018The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goalsRome, ItalySearch in Google Scholar

Fdz-Polanco, F., Méndez, E., Urueña, M.A., Villaverde, S. and P.A. García (2000): Spatial distribution of hetero-trophs and nitrifiers in a submerged biofilter for nitrification. Water Research 34, 4081–4089.Fdz-PolancoF.MéndezE.UrueñaM.A.VillaverdeS.GarcíaP.A.2000Spatial distribution of hetero-trophs and nitrifiers in a submerged biofilter for nitrificationWater Research344081408910.1016/S0043-1354(00)00159-7Search in Google Scholar

Gichana, Z.M., Liti, D., Silke, D., Waikibia, J. and H. Waidbacher (2018): Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation. Aquaculture International 26, 1541–1572.GichanaZ.M.LitiD.SilkeD.WaikibiaJ.WaidbacherH.2018Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilationAquaculture International261541157210.1007/s10499-018-0303-xSearch in Google Scholar

Guerdat, T.C. (2008): A large scale evaluation of commercially available biological filters for recirculating aqua-culture systems. Aquacultural Engineering 42, 38–49.GuerdatT.C.2008A large scale evaluation of commercially available biological filters for recirculating aqua-culture systemsAquacultural Engineering42384910.1016/j.aquaeng.2009.10.002Search in Google Scholar

Guerdat, T.C., Losordo, T.M., Classen, J.J., Osborne, J.A. and D.P. DeLong (2010): An evaluation of commercially available biological filters for recirculating aqua-culture systems. Aquacultural Engineering 42, 38–49.GuerdatT.C.LosordoT.M.ClassenJ.J.OsborneJ.A.DeLongD.P.2010An evaluation of commercially available biological filters for recirculating aqua-culture systemsAquacultural Engineering42384910.1016/j.aquaeng.2009.10.002Search in Google Scholar

Gutierrez-Wing, M., Malone, R. and K. Rusch (2012): Evaluation of polyhydroxybutyrate as a carbon source for recirculating aquaculture water denitrification. Aquacultural Engineering 51, 36–43.Gutierrez-WingM.MaloneR.RuschK.2012Evaluation of polyhydroxybutyrate as a carbon source for recirculating aquaculture water denitrificationAquacultural Engineering51364310.1016/j.aquaeng.2012.07.002Search in Google Scholar

Hamlin, H.J., Michaels, J.T., Beaulaton, C.M., Graham, W.F., Dutt, W., Steinbach, P. and K.L. Main (2008): Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture. Aquacultural Engineering 38, 79–92HamlinH.J.MichaelsJ.T.BeaulatonC.M.GrahamW.F.DuttW.SteinbachP.MainK.L.2008Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquacultureAquacultural Engineering38799210.1016/j.aquaeng.2007.11.003Search in Google Scholar

Kir, M. (2009): Nitrification performance of a submerged biofilter in a laboratory scale size of the recirculating shrimp system. Turkish Journal of Fisheries and Aquatic Sciences 9, 209–214.KirM.2009Nitrification performance of a submerged biofilter in a laboratory scale size of the recirculating shrimp systemTurkish Journal of Fisheries and Aquatic Sciences920921410.4194/trjfas.2009.0213Search in Google Scholar

Krom, M.D., Ben David, A., Ingall, E.D., Benning, L.G., Clerici, S., Bottrell, S. and J. van Rijn (2014): Bacterially mediated removal of phosphorus and cycling of nitrate and sulfate in the waste stream of a “zero -discharge” recirculating mariculture system. Water Research 56, 109–121.KromM.D.Ben DavidA.IngallE.D.BenningL.G.ClericiS.BottrellS.van RijnJ.2014Bacterially mediated removal of phosphorus and cycling of nitrate and sulfate in the waste stream of a “zero -discharge” recirculating mariculture systemWater Research5610912110.1016/j.watres.2014.02.04924657541Search in Google Scholar

Lee, P.G., Lea, R.N., Dohmann, E., Prebilsky, W., Turk, P.E., Ying, H. and J.L. Whitson (2000): Denitrification in aquaculture systems: An example of a fuzzy logic control problem. Aquacultural Engineering 23, 37–59.LeeP.G.LeaR.N.DohmannE.PrebilskyW.TurkP.E.YingH.WhitsonJ.L.2000Denitrification in aquaculture systems: An example of a fuzzy logic control problemAquacultural Engineering23375910.1016/S0144-8609(00)00046-7Search in Google Scholar

Liti, D., Cherop, L., Munguti, J.M. and L. Chhorn (2005): Growth and economic performance of Nile tilapia (Oreochromis niloticus) fed on two formulated diets and two locally available feeds in fertilized ponds. Aquaculture Research 36, 746–752.LitiD.CheropL.MungutiJ.M.ChhornL.2005Growth and economic performance of Nile tilapia (Oreochromis niloticus) fed on two formulated diets and two locally available feeds in fertilized pondsAquaculture Research3674675210.1111/j.1365-2109.2005.01265.xSearch in Google Scholar

Malone, R.F. and T.J. Pfeiffer (2006): Rating fixed film nitrifying biofilters used in recirculating aquaculture systems. Aquacultural Engineering 34, 389–402.MaloneR.F.PfeifferT.J.2006Rating fixed film nitrifying biofilters used in recirculating aquaculture systemsAquacultural Engineering3438940210.1016/j.aquaeng.2005.08.007Search in Google Scholar

Martins, C.I.M., Eding, E.H., Verdegem, M.C.J., Heinsbroek, L.T.N., Schneider, O., Blancheton, J.P. and J.A.J. Verreth (2010): New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacultural Engineering 43, 83–93.MartinsC.I.M.EdingE.H.VerdegemM.C.J.HeinsbroekL.T.N.SchneiderO.BlanchetonJ.P.VerrethJ.A.J.2010New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainabilityAquacultural Engineering43839310.1016/j.aquaeng.2010.09.002Search in Google Scholar

Meriac, A. (2014): Dietary carbohydrates and denitrification in recirculating aquaculture systems. Wageningen University.MeriacA.2014Dietary carbohydrates and denitrification in recirculating aquaculture systemsWageningen UniversitySearch in Google Scholar

Nootong, K. and S. Powtongsook (2012): Performance evaluation of the compact aquaculture system integrating submerged fibrous nitrifying biofilters. Songklanakarin Journal of Science and Technology 34, 53–59.NootongK.PowtongsookS.2012Performance evaluation of the compact aquaculture system integrating submerged fibrous nitrifying biofiltersSongklanakarin Journal of Science and Technology345359Search in Google Scholar

Opiyo, M.A., Marijani, E., Muendo, P., Odede, R., Leschen, W. and H. Charo-Karisa (2018): A review of aquaculture production and health management practices of farmed fish in Kenya. International Journal of Veterinary Science and Medicine 6, 141–148.OpiyoM.A.MarijaniE.MuendoP.OdedeR.LeschenW.Charo-KarisaH.2018A review of aquaculture production and health management practices of farmed fish in KenyaInternational Journal of Veterinary Science and Medicine614114810.1016/j.ijvsm.2018.07.001Search in Google Scholar

Piedrahita, R.H. (2003): Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 226, 35–44.PiedrahitaR.H.2003Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculationAquaculture226354410.1016/S0044-8486(03)00465-4Search in Google Scholar

Ramdhani, N. and F. Bux (2007): Functional characterization of heterotrophic denitrifying bacteria in activated sludge. South African Journal of Science 103, 113–116.RamdhaniN.BuxF.2007Functional characterization of heterotrophic denitrifying bacteria in activated sludgeSouth African Journal of Science103113116Search in Google Scholar

Ramírez-Godínez, J., Beltrán-Hernández, R.I., Coronel-Olivares, C., Contreras-López, E., Quezada-Cruz, M. and G. Vázquez-Rodríguez (2013): Recirculating Systems for Pollution Prevention in Aquaculture Facilities. Journal of Water Resource and Protection 5, 5–9.Ramírez-GodínezJ.Beltrán-HernándezR.I.Coronel-OlivaresC.Contreras-LópezE.Quezada-CruzM.Vázquez-RodríguezG.2013Recirculating Systems for Pollution Prevention in Aquaculture FacilitiesJournal of Water Resource and Protection55910.4236/jwarp.2013.57A002Search in Google Scholar

Ridha, M. and E.M. Cruz (2001): Effect of biofilter media on water quality and biological performance of the Nile Tilapia Oreochromis niloticus L. reared in a simple recirculation system. Aquacultural Engineering 24, 157–166.RidhaM.CruzE.M.2001Effect of biofilter media on water quality and biological performance of the Nile Tilapia Oreochromis niloticus L. reared in a simple recirculation systemAquacultural Engineering2415716610.1016/S0144-8609(01)00060-7Search in Google Scholar

Ross, L. (2000): Environmental physiology and energetics. In: Beveridge, M.C.M. and B.J. McAndrew (Eds.): Tilapias: Biology and exploitation. Springer, Dordrecht, pp. 89–128.RossL.2000Environmental physiology and energeticsBeveridgeM.C.M.McAndrewB.J.(Eds.)Tilapias: Biology and exploitationSpringerDordrecht8912810.1007/978-94-011-4008-9_4Search in Google Scholar

Shnel, N., Barak, Y., Ezer, T., Dafni, Z. and J. van Rijn (2002): Design and performance of a zero-discharge tilapia recirculating system. Aquacultural Engineering 26, 191–203.ShnelN.BarakY.EzerT.DafniZ.van RijnJ.2002Design and performance of a zero-discharge tilapia recirculating systemAquacultural Engineering2619120310.1016/S0144-8609(02)00013-4Search in Google Scholar

Stickney, R.R. (2005): Aquaculture: An introduction text. CABI Publishing, Cambridge, USA.StickneyR.R.2005Aquaculture: An introduction textCABI PublishingCambridge, USA10.1079/9780851990811.0000Search in Google Scholar

Stief, P. (2001): Influence of sediment and pore-water composition on nitrite accumulation in a nitrate-perfused freshwater sediment. Water Research 35, 2811–2818.StiefP.2001Influence of sediment and pore-water composition on nitrite accumulation in a nitrate-perfused freshwater sedimentWater Research352811281810.1016/S0043-1354(00)00590-XSearch in Google Scholar

Timmons, M.B. and J.M. Ebeling (2010): Recirculating Aquaculture. Publication No. 401-2010, Northeastern Regional Aquaculture Center (NRAC), Cayuga Aqua Ventures, Ithaca, New York.TimmonsM.B.EbelingJ.M.2010Recirculating Aquaculture. Publication No. 401-2010, Northeastern Regional Aquaculture Center (NRAC)Cayuga Aqua VenturesIthaca, New YorkSearch in Google Scholar

Timmons, M.B., Ebeling, J.M., Wheaton, F.W., Summer-felt, S.T. and B.J. Vinci (2002): Recirculating Aquaculture Systems. Publication No. 01-002, Northeastern Regional Aquaculture Center (NRAC), Cayuga Aqua Ventures, Ithaca, New York.TimmonsM.B.EbelingJ.M.WheatonF.W.Summer-feltS.T.VinciB.J.2002Recirculating Aquaculture Systems. Publication No. 01-002, Northeastern Regional Aquaculture Center (NRAC)Cayuga Aqua VenturesIthaca, New YorkSearch in Google Scholar

Tsukuda, S., Christianson, L., Kolb, A., Saito, K. and S. Summerfelt (2015): Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters. Aquacultural Engineering 64, 49–59.TsukudaS.ChristiansonL.KolbA.SaitoK.SummerfeltS.2015Heterotrophic denitrification of aquaculture effluent using fluidized sand biofiltersAquacultural Engineering64495910.1016/j.aquaeng.2014.10.010Search in Google Scholar

Turcios, A.E. and J. Papenbrock (2014): Sustainable treatment of aquaculture effluents – What can we learn from the past for the future? Sustainability 6, 836–856.TurciosA.E.PapenbrockJ.2014Sustainable treatment of aquaculture effluents – What can we learn from the past for the future?Sustainability683685610.3390/su6020836Search in Google Scholar

van Kessel, M.A.H.J., Harhangi, H.R., van de Pas-Schoonen, K., van de Vossenberg, J., Flik, G., Jetten, M.S.M. and H.J.M. Op den Camp (2010): Biodiversity of N-cycle bacteria in nitrogen removing moving bed biofilters for freshwater recirculating aquaculture systems. Aquaculture 30 6, 177–184.van KesselM.A.H.J.HarhangiH.R.van de Pas-SchoonenK.van de VossenbergJ.FlikG.JettenM.S.M.Op den CampH.J.M.2010Biodiversity of N-cycle bacteria in nitrogen removing moving bed biofilters for freshwater recirculating aquaculture systemsAquaculture 30617718410.1016/j.aquaculture.2010.05.019Search in Google Scholar

van Rijn, J., Tal, Y. and H.J. Schreier (2006): Denitrification in recirculating systems: Theory and applications. Aquacultural Engineering 34, 364–376.van RijnJ.TalY.SchreierH.J.2006Denitrification in recirculating systems: Theory and applicationsAquacultural Engineering3436437610.1016/j.aquaeng.2005.04.004Search in Google Scholar

Verdegem, M.C.J., Bosma, R.H. and J.A.J. Verreth (2006): Reducing water use for animal production through aquaculture. International Journal of Water Resources Development 22, 101–113.VerdegemM.C.J.BosmaR.H.VerrethJ.A.J.2006Reducing water use for animal production through aquacultureInternational Journal of Water Resources Development2210111310.1080/07900620500405544Search in Google Scholar

Waite, R., Beveridge, M., Brummett, R., Castine, S., Chaiyawannakarn, N., Kaushik, S. and M. Phillips (2014): Improving productivity and environmental performance of aquaculture. Creating a Sustainable Food Future 43, 1–60.WaiteR.BeveridgeM.BrummettR.CastineS.ChaiyawannakarnN.KaushikS.PhillipsM.2014Improving productivity and environmental performance of aquacultureCreating a Sustainable Food Future43160Search in Google Scholar

Wang, J. and L.L. Chu (2016): Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnology Advances 34, 1103–1112.WangJ.ChuL.L.2016Biological nitrate removal from water and wastewater by solid-phase denitrification processBiotechnology Advances341103111210.1016/j.biotechadv.2016.07.00127396522Search in Google Scholar

Wongkiew, S., Hu, Z., Chandran, K., Lee, J.W. and S.K. Khanal (2017): Nitrogen transformations in aquaponic systems: A review. Aquacultural Engineering, 76, 9–19.WongkiewS.HuZ.ChandranK.LeeJ.W.KhanalS.K.2017Nitrogen transformations in aquaponic systems: A reviewAquacultural Engineering7691910.1016/j.aquaeng.2017.01.004Search in Google Scholar

Zar, J.H. (2010): Biostatistical Analysis. 5th ed., Prentice Hall, New Jersey.ZarJ.H.2010Biostatistical Analysis5th ed.Prentice HallNew JerseySearch in Google Scholar

eISSN:
0006-5471
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Ecology, other