This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Kambe T., A new formulation of equations of compressible fluids by analogy with Maxwell’s equations, Fluid Dyn. Res. 42, 055502, 2010.Search in Google Scholar
Jamati F., Analogy between vortex waves and EM waves, Fluid Dyn. Res. 50 065511, 2018.Search in Google Scholar
Arbab A.I., The analogy between electromagnetism and hydrodynamics, Physics Essays 24, 254-259, 2011.Search in Google Scholar
Ivanova E.A., Modeling of electrodynamic processes by means of mechanical analogies, Z Angew Math Mech. 101:e202000076, 2021.Search in Google Scholar
Dmitriev V.P., Mechanics of electromagnetic interactions, arXiv:physics/0612210.Search in Google Scholar
Dmitriev V.P., Towards an Exact Mechanical Analogy of Particles and Fields, Nuov. Cim. 111 A, N5, pp.501-511, 1998, https://doi.org/10.1007/BF03185584.Search in Google Scholar
Wang X.S., Derivation of Maxwell’s equations based on a continuum mechanical model of vacuum and a singularity model of electric charges, Prog. Phys. 2, 111-120, 2008.Search in Google Scholar
Simeonov L.S., Mechanical Model of Maxwell’s Equations and of Lorentz Transformations, Foundations of Physics, volume 52, article number 52, 2023.Search in Google Scholar
Doinikov A.A., Acoustic radiation forces: Classical theory and recent advances, Recent Res. Devel. Acoustics, 1, 39-67, 2003.Search in Google Scholar
Barbat T., Ashgriz N., Liu C.S., Dynamics of two interacting bubbles in an acoustic field, J. Fluid Mech. 389, 137-168, 1999.Search in Google Scholar
Simaciu I., Borsos Z., Dumitrescu Gh., Silva G.T., Bărbat T., The acoustic force of electrostatic type, Bul. Inst. Politeh. Iaşi, Secţ. Mat., Mec. teor., Fiz. 65 (69), No 2, pp. 15-28, 2019; arXiv:1711.03567v1, 2017.Search in Google Scholar
Simaciu I., Borsos Z., Dumitrescu Gh., Baciu A., Planck-Einstein-de Broglie type relations for acoustic waves, arXiv:1610.05611, 2016.Search in Google Scholar
Simaciu I., Borsos Z., Baciu A., Nan G., The Acoustic World: Mechanical Inertia of Waves, Bul. Inst. Politeh. Iaşi, Secţ. Mat., Mec. Teor., Fiz. 62 (66), No 4, pp. 52-63, 2016.Search in Google Scholar
Simaciu I., Dumitrescu Gh., Borsos Z., Brădac M., Interactions in an Acoustic World: Dumb Hole, Adv. High Energy Phys.,Vol. 2018, article ID 7265362, 2018.Search in Google Scholar
Simaciu I., Borsos Z., Dumitrescu Gh., Acoustic lens associated with a radial oscillating bubble, Bul. Inst. Politeh. Iaşi, Secţ. Mat., Mec. teor., Fiz. 66 (70), No 2, pp. 9-15, 2020; arXiv:1811.08738, 2018.Search in Google Scholar
Simaciu I., Borsos Z., Dumitrescu Gh., Mach’s Principle in the Acoustic World, arXiv: 1907.05713, 2019; Buletinul Institutului Politehnic din Iaşi, Secţia Matematică. Mecanică Teoretică. Fizică, Volumul 67 (71), No. 4, 59-69, 2021.Search in Google Scholar
Simaciu I., Borsos Z., Drafta V., Dumitrescu Gh., Phenomena in bubbles cluster, arXiv:2212.12790, 2023.Search in Google Scholar
Landau L.D., Lifshitz E.M., Fluid Mechanics, Vol. 6, Third Rev. Ed., 1966.Search in Google Scholar
Matthews M.R., Anderson B.P., Haljan P.C., Hall D.S., Wieman C.E., Cornell E.A., Vortices in a Bose-Einstein Condensate, Phys. Rev. Lett. 83 (13), pp. 2498 – 2501, 1999.Search in Google Scholar
Weiler C.N., Neely T.W., Scherer D.R., Bradley A.S., Davis M.J., Anderson B.P., Spontaneous vortices in the formation of Bose-Einstein condensates, Nature 455 (7215), 948–951, 2009.Search in Google Scholar
Chena L.Y., Zhanga L.X., Shaoa X.M., The motion of small bubble in the ideal vortex flow, Procedia Engineering 126, pp. 228 – 231, 2015.Search in Google Scholar
Oweis G.F., van der Hout I. E., Iyer C., Tryggvason G., Ceccio S.L., Capture and inception of bubbles near line vortices, Physics of Fluids 17(2): 022105-022105-14. http://hdl.handle.net/2027.42/87832, 2005.Search in Google Scholar
Ruban V.P., Bubbles with attached quantum vortices in trapped binary Bose-Einstein condensates, Journal of Experimental and Theoretical Physics, Vol. 133, No. 6, pp. 779-785, https://doi.org/10.1134/S1063776121120062, 2021.Search in Google Scholar
Jackson J.D., Classical Electrodynamics, 2nd ed., Wiley, New York, 1975.Search in Google Scholar
Sadighi-Bonabi R., Rezaee N., Ebrahimi H., Mirheydari M., Interaction of two oscillating sonoluminescence bubbles in sulfuric acid, Physical Review E 82, 016316, 2010.Search in Google Scholar
Barut A.O., Zanghi N., Classical Model of the Dirac Electron, Phys. Rev. Lett. 52, pp. 2009-2012, 1984.Search in Google Scholar
Dirac P.A.M., The quantum theory of the electron, Proc. Roy. Soc. Lond. A, 117, 610-624, 1928.Search in Google Scholar
Tiwari S.C., Anomalous magnetic moment and vortex structure of the electron, Modern Physics Letters A, Vol. 33, No. 31, 1850180, 2018.Search in Google Scholar
Zavtrak S.T., A classical treatment of the long-range radiative interaction of small particles, Journal of Physics A, General Physics 23 (9), 1493, 1999.Search in Google Scholar
Doinikov A.A., Zavtrak S.T., Radiation forces between two bubbles in a compressible liquid, J. Acoust. Soc. Am. 102 (3), 1997.Search in Google Scholar
Kambe T., Global Journal of Science Frontier Research: A Physics and Space Science, Volume 21, Issue 4, Version 1, 2021.Search in Google Scholar