Cite

[1] Haj – Taieb M., Haseeb A.S.M.A., Caulfield J., Bade K., Aktaa J., Hemker K.J., Thermal stability of electrodeposited LIGA Ni-W alloys for high-temperature MEMS applications, Microsyst. Technol., 14(2008), 1531 – 1536;10.1007/s00542-007-0536-5 Search in Google Scholar

[2] Jung H., Hong C., Ki J., Kim J., Kim B., Tak Y., Pulse electrodeposition of Ni-W alloy for trench filling in microelectromechanical systems, J. Nanosci. Nanotechnol., 8(2008), 5321 – 5325;10.1166/jnn.2008.1189 Search in Google Scholar

[3] Wang H., Ding G.F., Zhao X.L., Yao J.Y., Zhu J., Wang Z.M., Fabrication of low stress Ni-W nanocristalline for MEMS devices, Shanghai JiaotongDaxueXuebao/J. Shanghai Jiaotong Univ. 41(2007), 12 – 15; Search in Google Scholar

[4] Wang H., Liu R., Cheng F.J., Cao Y., Ding G.F., Zhao X.L., Electrodepositing amorphous Ni-W alloys for MEMS, Microelectron. Eng., 87(2010), 1901 – 1906;10.1016/j.mee.2009.11.018 Search in Google Scholar

[5] Armstrong D., Haseeb A., Wilkinson A., Roberts S., Micro-fracture testing of Ni-W microbeams produced by electrodeposition and FIB machining, MRS Proceedings, Cambridge Univ. Press, 2006 (pp. 0983-LL0908-0907);10.1557/PROC-983-0983-LL08-07 Search in Google Scholar

[6] Younes O., Gileadi E., Electroplating of Ni /W Alloys (I): Ammoniacal citrate baths. J Electrochem Soc [Internet]. 2002; 149(2):C100; Available from: http://dx.doi.org/10.1149/1.1433750; Search in Google Scholar

[7] Younes O., Gileadi E., Younes O. Electroplating of High Tungsten Content Ni/W Alloys. Electrochem Solid-state Lett [Internet]. 1999; 3(12): 543; Available from: https://doi.org/10.1149/1.1391203; Search in Google Scholar

[8] Younes O., Zhu L., Rosenberg Y., Shacham-Diamand Y., Gileadi E. Electroplating of Amorphous Thin Films of Tungsten/Nickel Alloys. Langmuir [Internet]. 2001 Dec 1;17(26):8270–5; Available from: https://doi.org/10.1021/la010660x; Search in Google Scholar

[9] Yin K.-M., Lin B.-T., Effects of boric acid on the electrodeposition of iron, nickel and iron-nickel. Surf Coatings Technology. 1996; 78(1–3): 205–10;10.1016/0257-8972(94)02410-3 Search in Google Scholar

[10] Schloßmacher P., Yamasaki T., Structural Analysis of Electroplated Amorphous-Nanocrystalline Ni-W. Microchim Acta [Internet]. 2000 Apr 1;132(2):309–13; Available from: https://doi.org/10.1007/s006040050074; Search in Google Scholar

[11] Namburi L., Electrodeposition of NiW alloys into deep recesses.pdf. 2001; Search in Google Scholar

[12] Yao S., Zhao S., Guo H., Kowaka M., New Amorphous Alloy Deposit with High Corrosion Resistance. Corossion. 1996; 52(03), 183;10.5006/1.3292112 Search in Google Scholar

[13] Atanassov N, Gencheva K, Bratoeva M. Properties of nickel-tungsten alloys electrodeposited from sulfamate electrolyte. Plating and surface finishing, 1997; 84(2): 67–74; Search in Google Scholar

[14] Metikos – Hukovic M., Grubac Z., Radic N., Tonejc A., Sputter deposited Nanocrystalline Ni and Ni-W films as catalysts for hydrogen evolution, J. Mol. Catal. A Chem., 249 (2006), 172 – 180;10.1016/j.molcata.2006.01.020 Search in Google Scholar

[15] Kawashima A., Akiyama E., Habazaki H., Hashimoto K., Caracterization of sputter-deposited Ni-Mo and Ni-W alloy electrocatalysts for hydrogen evolution in alkaline solution, Mater. Sci. Eng. A 226 (1997), 905 – 909;10.1016/S0921-5093(97)80095-0 Search in Google Scholar

[16] Tasic G.S., Lacnjevac U., Tasic M.M., Kaninski M.M., Nikolic V.M., Zugic D.L., Jovic V.D., Influence of electrodeposition parameters of Ni-W on Ni cathode for alkaline water electrolyser, Int. J. Hydrog. Energy 38 (2013), 4291 – 4297;10.1016/j.ijhydene.2013.01.193 Search in Google Scholar

[17] Gonzalez – Buch C., Herraiz-Cardona I., Ortega E.M., Garcia – Anton J., Perez-Herranz, Development of Ni-Mo, Ni-W and Ni-Co macroporous materials for hydrogen evolution reaction, Chem. Eng. Trans., (2013), 865 – 870; Search in Google Scholar

[18] Sizova I., Kulikov A., Onishchenko M., Serdyukov S., Maksimov A., Synthesis of nickel-tungsten sulfidehydrodearomatization catalysts by the decomposition of oil-soluble precursors, Pet. Chem, 56 (2016), 44 – 50;10.1134/S0965544115080174 Search in Google Scholar

[19] Quiroga Arganaraz M.P., Ribotta S.B., Folquer M.E., Benitez G., Rubert A., Gassa L.M., Vela M.E., Salvarezza R.C., The electrochemistry of nanostructured Ni-W alloys, J. Solid State Electrochem. 17 (2013), 307 – 313;10.1007/s10008-012-1965-3 Search in Google Scholar

[20] Rashkov R., Atanassov N., Jannakoudakis A., Jannakoudakis P., Theodoridou E., Structure and electrocatalytic activity of Ni-W thin films deposited on carbon fiber supports, J. Electrochem. Soc., 153 (2006), C152 – C156;10.1149/1.2163812 Search in Google Scholar

[21] Elias I., Hegde A.C., Electrodeposition and electrocatalytic study of Ni-W alloy coating, Mater. Sci. Forum, Trans Tech Publ 2015, pp.651 – 654;10.4028/www.scientific.net/MSF.830-831.651 Search in Google Scholar

[22] Fan C., Piron D., Sleb A, Paradis P., Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis, J. Electrochem. Soc., (1994), 382 – 387;10.1149/1.2054736 Search in Google Scholar

[23] Maksic A.D., Miulovic S.M., Nikolic V.M., Perovic I.M., Kaninski M.P.M., Energy consumption of the electrolytic hydrogen production using Ni-W based activators – Part I, Appl. Catal. A Gen., 405 (2011), 25 – 28;10.1016/j.apcata.2011.07.017 Search in Google Scholar

[24] Hong S.H., Ahn S.H., Choi J., Kim H.Y., Kim H.-J., Jang J.H., Kim H., Kim S.-K., High-activity electrodeposited NiW catalysts for hydrogrn evolution in alkaline water electrolysis, Appl. Surf. Sci. (2015);10.1016/j.apsusc.2015.05.040 Search in Google Scholar

[25] Kaninski M.P.M., Saponjic D.P., Perovic I.M., Maksic A.D., Nikolic V.M., Electrochemical characterization of the Ni-W catalyst formed in situ during alkaline electrolityc hydrogen production – Part II, Appl. Catal. A Gen., 405 (2011), 29 – 35;10.1016/j.apcata.2011.07.015 Search in Google Scholar

[26] Guo Z, Zhu X, Zhai D, Yang X. Electrodeposition of Ni-W amorphous alloy and Ni-W-SiC composite deposits, 材 料科学技术 (英文版), 2000; Search in Google Scholar

[27] Poroch – Serițan M., Cercetăriprivindcontrolulîntimp real, prinspectroscopie, al băilorgalvanice de nichelare, (PhD Thesis) Suceava, 2010; Search in Google Scholar

[28] Poroch – Serițan M., Gutt G., Severin T., Bobu M., Influence of pH galvanic baths on the nickel deposits. Annals of Dunărea de Jos University of Galați, Fascicle IX Metallurgy and Materials Science, 2009; 2: 315 – 320; Search in Google Scholar

[29] Dias A., Ciminelli V.N.S., Thermodynamic calculation and modeling of the hydrothermal synthesisi of nickel tungstates, J. Eur. Ceram. Soc. 21 (2001), 2061 – 2065;10.1016/S0955-2219(01)00172-8 Search in Google Scholar

[30] Sen A., Pramanik P., A chemical syntetic route for the preparation of fine-grained metal tungstate powders (M = Ca, Co, Ni, Cu, Zn), J. Eur. Ceram. Soc. 21 (2001), 745-750;10.1016/S0955-2219(00)00265-X Search in Google Scholar

[31] Amadeh A., Harsijsani M., Moradi H., Wear behavior of carbon steel electrodeposited by nanocrystalline Ni-W coatings, Int. J. ISSI 6 (2009), 14 – 19; Search in Google Scholar

[32] Obradovic M.D., Bosnjakov G.Z, Stevanovic R.M., Maksimovic M.D., Despic A.R., Pulse and direct current plating of Ni-W alloys from ammonia-citrate electrolyte, Sulf. Coat. Technol., 200 (2006), 4201 – 4207;10.1016/j.surfcoat.2004.12.013 Search in Google Scholar

[33] Oue S., Nakano H., Kobayashi S., Fukushima H., Structure and codepositionbehavior of Ni-W alloys electrodeposited from ammoniacal citrate solutions, J. Electrochem Soc. 156 (2009) D17-D22;10.1149/1.3006389 Search in Google Scholar

[34] Zemanova M., Kurinec R., Jorik V., Kadleciova M., Ni-W alloy coating deposited from a citrate electrolyte, Chem. Pap. 66 (2012), 492 – 501;10.2478/s11696-011-0116-0 Search in Google Scholar

[35] Wang Y., Zhou Q., Li K., Zhong Q., Bui Q.B., Preparation of Ni-W-SiO2 nanocomposite coating and evaluation of its hardness and corrosion resistance, Ceram. Int. 41 (2015), 79 – 84;10.1016/j.ceramint.2014.08.034 Search in Google Scholar

[36] Bratoeva M., Atanasov N., Effect of sulfamate-citrate electrolyte pH on the Ni-W alloy electrodeposition, Russ. J. Electrochem. 36 (2000), 60 – 63;10.1007/BF02757797 Search in Google Scholar

[37] Bera P., Kumar M.D., Anandan C., Shivakumara C., Characterization and microhardness of electrodeposited Ni-W coatings obtained from gluconate bath, Surf. Rev. Lett. (2014);10.1142/S0218625X15500110 Search in Google Scholar

[38] Mizushima I., Tang P.T., Hasen H.N., Somers M.A.J., Development of a new electroplating process for Ni-W alloy deposits, Electrochim. Acta 51 (2005), 888 – 896;10.1016/j.electacta.2005.04.050 Search in Google Scholar

[39] Mizushima I., Tang P.T., Hasen H.N., Somers M.A.J., Identification of an anomalous phase in Ni-W electrodeposits, Surf. Coat. Technol. 202 (2008) 3341 – 3345;10.1016/j.surfcoat.2007.12.016 Search in Google Scholar

[40] Mizushima I., Electrodeposition of Ni-W Alloy and Characterization of Microstructure and Properties of the Deposits (PhD Thesis) 2006; Search in Google Scholar

[41] Brenner A., Electrodeposition of Alloys, Academic Press Inc., New York, 1963;10.1016/B978-1-4831-9807-1.50015-5 Search in Google Scholar

[42] Holt M., Vaaler L., Electrolytic reduction of aqueus tungstate solutions, J. Electrochem. Soc. 94 (1948), 50 – 58;10.1149/1.2773824 Search in Google Scholar

[43] Clark W.E., Lietzke M., The mechanism of the tungsten alloy plating process. J. Electrochem Soc. 99 (1952), 245 – 249;10.1149/1.2779712 Search in Google Scholar

[44] Fukushima H., Akiyama T., Akagi S., Higashi K., Role of iron-group metals in the induced codeposition of molybdenum from aqueous solution, Trans. Jpn. Inst. Metals 20 (1979), 358 – 364;10.2320/matertrans1960.20.358 Search in Google Scholar

[45] Podlaha E., Landolt D., Induced codeposition II. A mathematical model describing the electrodeposition of Ni-Mo alloys, J. Electrochem. Soc. 143 (1996), 893 – 899;10.1149/1.1836554 Search in Google Scholar

[46] Podlaha E., Landolt D., Induced codeposition III. Molybdenum alloys with nickel, cobalt and iron, J. Electrochem. Soc. 144 (1997), 1672 – 1680;10.1149/1.1837658 Search in Google Scholar

[47] Niu Z.-J., Yao S.-B., Zhou S.-M., In situ surface Raman investigation on induced codeposition of an Fei-Mo alloy, J. Electroanal. Chem. 455 (1998), 205 - 207;10.1016/S0022-0728(98)00148-X Search in Google Scholar

[48] Zeng Y., Li Z., Ma M., Zhou S., In situ surface Raman study of the induced codeposition mechanism of Ni-Mo alloys, Electrochem. Commun. 2 (2000), 36 – 38;10.1016/S1388-2481(99)00137-X Search in Google Scholar

[49] Obradovic M., Stevanovic R., Despic A., Electrochemical deposition of Ni-W alloys from ammonia-citrate electrolyte, J. Electroanal. Chem. 552 (2003), 185 – 196;10.1016/S0022-0728(03)00151-7 Search in Google Scholar

[50] Kabi S., Raeissi K., Saatchi A., Effect of polarization type on properties of Ni-W nanocrystalline electrodeposits, J. Apple. Electrochem. 39 (2009), 1279 – 1285;10.1007/s10800-009-9796-3 Search in Google Scholar

[51] Eliaz N., Gileadi E., The mechanism of induced codeposition of Ni-W alloys, ECS Trans., (2007), 337 – 349;10.1149/1.2408887 Search in Google Scholar

[52] Eliaz N., Gileadi E., Induced codeposition of alloys of tungsten, molybdenum nd rhenium with transition metals, Modern Aspects of Electrochemistry, Springer 2008, pp. 191 – 301;10.1007/978-0-387-49489-0_4 Search in Google Scholar

[[53] Ibrahim M.A.M., Rehim S.S.A.E., Wahaab S.M. A.E., Dankeria M.M., Nickel Electroplating On Steel From Acidic Citrate Baths. Plat Surf Finish. 1999 aprilie. 69-74, https://www.nmfrc.org/pdf/p0499i.pdf; Search in Google Scholar

[54] Moussa S., Ibrahim M., Rehim S.A.E., Induced electrodeposition of tungsten with nickel from acidic citrate electrolyte. Journal of applied electrochemistry. 2006; 36(3): 333–8;10.1007/s10800-005-9069-8 Search in Google Scholar

[55] Yamasaki T, High-strength nanocrystalline Ni-W alloys produced by electrodeposition and their embrittlement behaviors during grain growth. Scripta Materialia. 2001 May; 44(8–9):1497; DOI:10.1016/S1359-6462(01)00720-5; Search in Google Scholar

[56] Nasu T., Sakurai M., Kamiyama T., Usuki T., Uemura O., Yamasaki T. EXAFS study on amorphous and nanocrystalline M–W (M = Fe; Ni) alloys produced by electrodeposition Journal of Non-Crystalline Solids. 2002; 312-314; 319–322;10.1016/S0022-3093(02)01702-7 Search in Google Scholar

[57] Omi T., Glass H., Yamamoto H., Phase Structure and Composition of Fe-W Alloy Electrodeposits. Journal of the Electrochemical Society. 1976; 123(3):341.10.1149/1.2132822 Search in Google Scholar

eISSN:
2537-4990
Idioma:
Inglés