Acceso abierto

Lactobacillus Spp. strains isolation, identification, preservation and quantitative determinations from the intestinal content and faeces of weaned piglets


Cite

Barszcz M., Taciak M., Skomial J., 2016. The effects of inulin, dried Jerusalem artichoke tuber and a multispecies probiotic preparation on microbiota ecology and immune status of the large intestine in young pigs. Arch. Anim. Nutr.;70(4):278-292. doi: 10.1080/1745039X.2016.1184368.27216555Open DOISearch in Google Scholar

Buffie C.G., Pamer E.G., 2013. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rew Immunol.;13(11):790-801. doi: 10.1038/nri3535.419419524096337Open DOISearch in Google Scholar

Chiang M.L., Chen H.C., Chen K.N., Lin Y.C. et al., 2015. Optimizing production of two potential probiotic lactobacilli strains isolated from piglet feces as feed additives for weaned piglets. Asian Australas J Anim Sci.;28(8):1163-1170. doi: 10.5713/ajas.14.0780.447848526104525Open DOISearch in Google Scholar

De Angelis M., Siragusa S., Berloco M., Caputo L. et al., 2006. Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding. Res Microbiol.; 157: 792-801. doi: 10.1016/j.resmic.2006.05.003.16844349Open DOISearch in Google Scholar

Dowarah R., Verma A.K., Agarwal N., Patel B.H.M., Singh B.P., 2017. Effect of swine based probiotic on performance, diarrhoea scores, intestinal microbiota and gut health of grower-finisher crossbred pigs. Livest Sci.;195:74-79. doi: 10.1016/j.livsci.2016.11.006.Open DOISearch in Google Scholar

Dowd S.F., Callaway T.R., Morrow-Tesch J., 2007. Handling may cause increased shedding of Escherichia coli and total coliforms in pigs. Foodborne Pathog Dis.;4(1):99-102. doi: 10.1089/fpd.2006.53.17378714Open DOISearch in Google Scholar

Duar R.M., Lin X.B., Zheng J., Martino M.E., Grenier T. et al., 2017. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev.;30(41):27-48. doi: 10.1093/femsre/fux030.28673043Open DOISearch in Google Scholar

Dumitru M, Habeanu M, Lefter Na, Gheorghe A., 2020. The effect of Bacillus licheniformis as direct-fed microbial product on growth performance, gastrointestinal disorders and microflora population in weaning piglets. Rom Biotechnol Lett.;25(6):2060-2069. doi: 10.25083/rbl/25.6/2060.2069.Open DOISearch in Google Scholar

Frese A., Parker K., Calvert C.C., Milla D.A., 2015. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome;3:28-37. doi: 101186/s40168-015-0091-8.Open DOISearch in Google Scholar

Greese R., Chaucheyras-Durand F., Fleury M.A., Van de Wiele T. et al., 2017. Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health. Trends Microbiol.;25(10):851-873. doi: 10.1016/j.tim.2017.05.004.28602521Open DOISearch in Google Scholar

Hammes W.P., Hertel C., 2009. Genus I. Lactobacillus Beijerinck 1901. In: Vos PD, Garrity G, Jones D, Krieg NR et al. (eds.), 2009. Bergey’s Manual of Systematic Bacteriology;3: The Firmicutes. Springer, New York:465-511.Search in Google Scholar

Holman D.B., Brunelle B.W., Trachsel J., Allen H.K., 2017. Meta-analysis to define a core microbiota in the swine gut. mSystems;2(3):e00004-17. doi: 10.1128/mSystems.00004-17.544323128567446Open DOISearch in Google Scholar

Isaacson R., Kim H.B., 2012. The intestinal microbiome of the pig. Anim Health Res Rew.;13(1):100-109. doi: 10.1017/S1466252312000084.22853934Open DOISearch in Google Scholar

Janczyk P., Pieper R., Smidt H., Souffrant W.B., 2007. Changes in the diversity of pig ileal lactobacilli around weaning determined by means of 16S rRNA gene amplification and denaturing gradient gel electrophoresis. FEMS Microbiol Ecol.;61(1):132-140. doi: 10.1111/j.1574-6941.2007.00317.x.17428304Open DOISearch in Google Scholar

Kamada N., Seo S.U., Chen G.Y., Nunez G., 2013. Role of the gut microbiota in immunity and inflammatory disease. Nat Rew Immunol.;13(5):321-335. doi: 10.1038/nri3430.23618829Open DOISearch in Google Scholar

Kim H.B., Borewicz K., White B.A., Singer R.S., Sreevatsan S. et al., 2011. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet Microbiol.;153(1-2):124-133. doi: 10.1016/j.vetmic.2011.05.021.21658864Open DOISearch in Google Scholar

Konstantinov S.R., Awati A.A., 2006. Williams B.A., Miller B.G. et al., 2006. Post-natal development of the porcine microbiota composition and activities. Environ Microbiol.;8(7):1191-1199. doi: 10.1111/j.1462-2920.2006.01009.x.16817927Open DOISearch in Google Scholar

Konstantinov S.R., Smidt H., Akkermans A.D., Casini L. et al., 2008. FEMS Microbiol Ecol.;66(3):599-607. doi: 10.1111/j.1574-6941.2008.00517.x.18537838Open DOISearch in Google Scholar

Lalles J.P., Bosi P., Smidt H., Stokes C.R., 2007. Weaning – a challenge to gut physiologists. Livest Sci.;108(1-3):82-93. doi: 10.1016/j.livsci.2007.01.091.Open DOISearch in Google Scholar

Mountzouris K.C., Tsirtsikos P., Kalamara E., Nitsch S. et al., 2007. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult Sci.;86(2):309-317. doi: 10.1093/ps/86.2.309.17234844Open DOISearch in Google Scholar

O’Toole P.W., Marchesi J.R., Hill C., 2017. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol.;2(art. no.17057):1-6. doi: 10.1038/nmicrobiol 2017.57.Open DOISearch in Google Scholar

Pedersen K., Tannock G.W., 1989. Colonization of the porcine gastrointestinal tract by lactobacilli. Appl Environ Microbiol.;55(2):279-283. doi: 10.1128/AEM.55.2.279-283.1989.Open DOISearch in Google Scholar

Pelinescu D.R., Sӑsӑrman E., Chifiriuc M.C., Stoica I. et al., 2009. Isolation and identification of some Lactobacillus and Enterococcus strains by a polyphasic taxonomical approach. Rom Biotechnol Lett.;14(2):4225-4233.Search in Google Scholar

Petri D., Hill J.E., Van Kessel A.G., 2010. Microbial succession in the gastrointestinal tract (GIT) of the preweaned pig. Livest Sci.;1-3:107-109. doi: 10.1016/j.livsci.2010.06.037.Open DOISearch in Google Scholar

Pieper R., Janczyk P., Schumann R., Souffrant W.B., 2006. The intestinal microflora of piglets around weaning – with emphasis on lactobacilli. Arch Zootech.;9:28-40.Search in Google Scholar

Shin D., Chang S.Y., Bogere P., Won K. et al., 2019. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLoS ONE.;14(8):e0220843. doi: 10.1371/journal.pone.0220843.671332331461453Open DOISearch in Google Scholar

Sorescu I., Dumitru M., Ciurescu G., 2019. Lactobacillus spp. and Enterococcus faecium strains isolation, identification, preservation and quantitative determinations from turkey gut content. Rom Biotechnol Lett.;24(1):41-49. doi: 10.25083/rbl/24.1/41.49.Open DOISearch in Google Scholar

Sorescu I., Dumitru M., Ciurescu G., 2020. Lactobacillus spp. strains isolation, identification, preservation and quantitative determinations from gut content of 26 days old chickens. Rom Biotechnol Lett., in press.10.25083/rbl/26.4/2765-2772Search in Google Scholar

Stoica C., Sorescu I., 2018. ABIS online-Advanced Bacterial Identification Software, an original tool for phenotypic bacterial identification. Regnum Prokaryotae. Available online: www.tgw1916.net. (accesed on June 1, 2018).Search in Google Scholar

Su Y., Yao W., Perez-Gutierrez O.N., Smidt H., Zhu WY., 2008. Changes in abundance of Lactobacillus spp. and Streptococcus suis in the stomach, jejunum and ileum of piglets after weaning. FEMS Microbiol Ecol.;66(3):546-555. doi: 10.1111/j.1574-6941.2008.00529.x.18554303Open DOISearch in Google Scholar

Tannock G.W., 2004. A special fondness for lactobacilli. Appl Environ Microbiol.;70(6):3189-3194. doi: 10.1128/AEM.70.6.3189-3194.2004.42772015184111Open DOISearch in Google Scholar

Upadrasta A., Stanton C., Hill C., Fitzgerald G. et al., 2011. Improving the stress tolerance of probiotic cultures: recent trends and future directions. In: Tsakalidou E., Papadimitriou K. (eds.). Stress Responses of Lactic Acid Bacteria. Springer, New York:395–438.10.1007/978-0-387-92771-8_17Search in Google Scholar

Van Winsen R.L., Urlings B.A., Lipman I.J., Snijders J.M. et al., 2001. Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs. Appl Environ Microbiol.;67(7):3071-3076. doi: 10.1128/AEM.67.7.3071-3076.2001.9298311425724Open DOISearch in Google Scholar

Walter J., 2008. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol.;74(16):4985-4996. doi: 10.1128/AEM.00753-08.251928618539818Open DOISearch in Google Scholar

Wang T., Teng K., Liu Y., Shi W. et al., 2019. Lactobacillus plantarum PFM 105 promotes intestinal development through modulation of gut microbiota in weaning piglets. Front Microbiol.;10:90. doi: 10.3389/fmicb.2019.00090.637175030804899Open DOISearch in Google Scholar

Wei H.K., Xue H.X., Zhou Z.X., Peng J., 2017. A carvacrol-thymol blend decreased intestinal oxidative stress and influenced selected microbes without changing the messenger RNA levels of tight junction proteins in jejunal mucosa of weaning piglets. Animal;11(2):193-201. doi: 10.1017/S1751731116001397.27416730Open DOISearch in Google Scholar

Zhang L., Xu Y.Q., Liu H.Y., Lai T. et al., 2010. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea: Effects on diarrhoea incidence, faecal microflora and immune responses. Vet Microbiol.;141(1-2):142-148. doi: 10.1016/j.vetmic.2009.09.003.19782483Open DOISearch in Google Scholar

eISSN:
2344-4592
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other