Cite

A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, A. V. Pyshkin, A. V. Sirotkin, N. Vyahhi, G. Tesler, M. A. Alekseyev, P. A. Pevzner, SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, Journal of Computational Biology 19 (5) (2012), 455-477. Search in Google Scholar

K. Behizadi, N. Jafarzadeh, A. Iranmanesh, Graph theoretical strategies in de novo assembly, IEEE Access 10 (2022), 9328-9339. Search in Google Scholar

J. Blazewicz, M. Kasprzak, M. Kierzynka, W. Frohmberg, A. Swiercz, P. Wojciechowski, P. Zurkowski, Graph algorithms for DNA sequencing–origins, current models and the future, European Journal of Operational Research 264 (3) (2018), 799-812. Search in Google Scholar

P. E. Compeau, P. A. Pevzner, G. Tesler, How to apply de Bruijn graphs to genome assembly, Nature Biotechnology 29 (11) (2011), 987-991. Search in Google Scholar

P. Compeau, P. A. Pevzner, Bioinformatics Algorithms: An Active Learning Approach, Active Learning Publishers, 2015. Search in Google Scholar

S. Gladman, An introduction to genome assembly (galaxy training materials), 18-10 (2022), URL: https://training.galaxyproject.org/training-material/topics/assembly/tutorials/general-introduction/tutorial.html, Accessed: 2022-10-21. Search in Google Scholar

R. M. Idury, M. S. Waterman, A new algorithm for DNA sequence assembly, Journal of Computational Biology 2 (2) (1995), 291-306. Search in Google Scholar

D. Li, C.M. Liu, R. Luo, K. Sadakane, T. W. Lam, MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph, Bioinformatics 31 (10) (2015), 1674-1676. Search in Google Scholar

R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu and others, SOAPdenovo2: an empirically improved memory-e cient short-read de novo assembler, Gigascience 1 (1) (2012), 2047-217X. Search in Google Scholar

Iu. P. Lysov, V. L. Florent’ev, A. A. Khorlin, K. R. Khrapko, V. V. Shik, Determination of the nucleotide sequence of DNA using hybridization with oligonucleotides. A new method, Dokl Akad Nauk SSSR 303 (6) (1988), 1508-1511. Search in Google Scholar

P. Medvedev, S. Pham, M. Chaisson, G. Tesler, P. A. Pevzner, Paired de bruijn graphs: a novel approach for incorporating mate pair information into genome assemblers, Journal of Computational Biology 18 (11) (2011), 1625-1634. Search in Google Scholar

E. W. Myers, G. G. Sutton, A. L. Delcher, I. M. Dew, D. P. Fasulo, M. J. Flanigan, S. A. Kravitz, C. M. Mobarry, K. H. Reinert, K. A. Remington, E. L. Anson, R. A. Bolanos, H. H. Chou, C. M. Jordan, A. L. Halpern, S. Lonardi, E. M. Beasley, R. C. Brandon, L. Chen, P. J. Dunn, Z. Lai, Y. Liang, D. R. Nusskern, M. Zhan, Q. Zhang, X. Zheng, G. M. Rubin, M. D. Adams, J. C. Venter, A whole-genome assembly of drosophila, Science 287 (5461) (2000), 2196-2204. Search in Google Scholar

E. W. Myers Jr, A history of DNA sequence assembly, IT - Information Technology 58 (3) (2016), 126-132, URL: https://doi.org/10.1515/itit-2015-0047, Accessed: 2022-10-17. Search in Google Scholar

Y. Peng, H. Leung, S. M. Yiu, F. Y. Chin, IDBA–a practical iterative de Bruijn graph de novo assembler, Annual International Conference on Research in Computational Molecular Biology, Springer, 2010, 426-440. Search in Google Scholar

P. A. Pevzner, 1-Tuple DNA sequencing: computer analysis, Journal of Biomolecular Structure and Dynamics 7 (1) (1989), 63-73. Search in Google Scholar

P. A. Pevzner, H. Tang, M. S. Waterman, An Eulerian path approach to DNA fragment assembly, Proceedings of the National Academy of Sciences 98 (17) (2001), 9748-9753. Search in Google Scholar

J. E. Quiroz-Ibarra, G. M. Mallén-Fullerton, G. Fernández-Anaya, DNA paired fragment assembly using graph theory, Algorithms 10 (2) (2017), 36. Search in Google Scholar

M. Rocha, P. G. Ferreira, Bioinformatics Algorithms: Design and Implementation in Python, Academic Press, 2018. Search in Google Scholar

F. Sanger, S. Nicklen, A. R. Coulson, DNA sequencing with chain-terminating inhibitors, Proceedings of the National Academy of Sciences 74 (1977), 5463-5467. Search in Google Scholar

F. Sanger, A. R. Coulson, G. F. Hong, D. F. Hill, G. B. Petersen, Nucleotide sequence of bacteriophage DNA, Journal of Molecular Biology 162 (4) (1982), 729-773. Search in Google Scholar

J. I. Sohn, J. W. Nam, The present and future of de novo whole-genome assembly, Briefings in Bioinformatics 19 (1) (2018), 23-40. Search in Google Scholar

E. Southern, Analyzing polynucleotide sequences, International patent application PCT/GB89/00460 (1988). Search in Google Scholar

B. Wajid, E. Serpedin, Review of general algorithmic features for genome assemblers for next generation sequencers, Genomics, Proteomics and Bioinformatics 10 (2) (2012), 58-73. Search in Google Scholar

D. R. Zerbino, E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs, Genome Research 18 (5) (2008), 821-829. Search in Google Scholar

W. Zhang, J. Chen, Y. Yang, Y. Tang, J. Shang, B. Shen, A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies, PloS One 6 (3) (2011), e17915. Search in Google Scholar

Galaxy, URL: https://usegalaxy.org/, Accessed: 2022-10-21. Search in Google Scholar

Zenodo, URL: https://zenodo.org/record/582600#.Y1NvKUpBxN5, Accessed: 2022-10-21. Search in Google Scholar

Assembly using Spades, URL: https://www.melbournebioinformatics.org.au/tutorials/tutorials/assembly/spades/, Accessed: 2022-10-21. Search in Google Scholar

eISSN:
1841-3307
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Mathematics, General Mathematics