Acceso abierto

Determinant Inequalities for Positive Definite Matrices Via Diananda’s Result for Arithmetic and Geometric Weighted Means

  
03 may 2023

Cite
Descargar portada

In this paper we prove among others that, if (Aj)j=1,...,m are positive definite matrices of order n ≥ 2 and qj ≥ 0, j = 1, ..., m with j=1mqj=1$$\sum\nolimits_{j = 1}^m {{q_j} = 1} $$, then 011mini{1,,m}{ qi }×[ i=1mqi(1qi)[ det(Ai) ]12n+11i<jmqiqj[ det(Ai+Aj) ]1 ]i=1mqi[ det(Ai) ]1[ det(i=1mqiAi) ]11mini{1,,m}{ qi }×[ i=1mqi(1qi)[ det(Ai) ]12n+11i<jmqiqj[ det(Ai+Aj) ]1 ].

Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Matemáticas, Matemáticas generales