Acceso abierto

A sufficient condition for local controllability of a Caputo type fractional differential inclusion


Cite

[1] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 460–481.10.1016/j.cnsns.2016.09.006 Search in Google Scholar

[2] R. Almeida, Fractional differential equations with mixed boundary conditions, Bull. Malays. Math. Sci. Soc. 42 (2019), 1687–1697.10.1007/s40840-017-0569-6 Search in Google Scholar

[3] R. Almeida, A.B. Malinowska, M.T.T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci. 41 (2018), 336–352.10.1002/mma.4617 Search in Google Scholar

[4] J. P. Aubin, H. Frankowska, Set-valued Analysis, Birkhauser, Basel, 1990. Search in Google Scholar

[5] D. Băleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific, Singapore, 2012.10.1142/8180 Search in Google Scholar

[6] M. Caputo, Elasticità e Dissipazione, Zanichelli, Bologna, 1969. Search in Google Scholar

[7] A. Cernea, Derived cones to reachable sets of fractional differential inclusions, Commun. Appl. Nonlinear Anal. 19 (2012), 23–31. Search in Google Scholar

[8] A. Cernea, Local controllability of a class of fractional differential inclusions via derived cones, in: S. Pinelas, J. Graef, S. Hilger, P. Kloeden, C. Schinas (Eds.) Differential and Difference Equations with Applications, SPMS 333, Springer, Cham, 2020, 143–152.10.1007/978-3-030-56323-3_12 Search in Google Scholar

[9] A. Cernea, Continuously parametrized solutions of a fractional integro-differential inclusion, Appl. Anal. Optim. 5 (2021), 157–167. Search in Google Scholar

[10] A. Cernea, On the reachable set of a class of fractional differential inclusions, J. Frac. Calc. Appl. 12 (2021), 1–8.10.7153/fdc-2021-11-09 Search in Google Scholar

[11] A. Cernea, On a Caputo type fractional integro-differential inclusion, An. Acad. Rom. Sci. Ser. Math. Appl. 13 (2021), 166–177.10.56082/annalsarscimath.2021.1-2.166 Search in Google Scholar

[12] A. Cernea, On a class of partial fractional integro-differential inclusions, Novi Sad J. Math., to appear. Search in Google Scholar

[13] K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2010.10.1007/978-3-642-14574-2 Search in Google Scholar

[14] J. Hadamard, Essai sur l’etude des fonctions donnees par leur development de Taylor, J. Math. Pures Appl. 8 (1892), 101–186. Search in Google Scholar

[15] M.R. Hestenes, Calculus of Variations and Optimal Control Theory, Wiley, New York, 1966. Search in Google Scholar

[16] U. N. Katugampola, A new approach to generalized fractional derivative, Bull. Math. Anal. Appl. 6 (2014), 1–15. Search in Google Scholar

[17] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. Search in Google Scholar

[18] Ş. Mirică, Intersection properties of tangent cones and generalized multiplier rules, Optimization 46 (1999), 135–163.10.1080/02331939908844449 Search in Google Scholar

[19] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. Search in Google Scholar

eISSN:
1841-3307
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Mathematics, General Mathematics