Acceso abierto

A common generalization of convolved (u, v)-Lucas first and second kinds p-polynomials

 y   
30 dic 2021

Cite
Descargar portada

[1] M. Anđelić, Z. Du, C. M. da Fonseca and E. Kiliç, A matrix approach to some second-order difference equations with sign-alternating coefficients, J. Differ. Equ. Appl., 26 (2020), 149–162.10.1080/10236198.2019.1709180 Search in Google Scholar

[2] R. G. Buschman, Fibonacci numbers, Chebyshev polynomials, Generalizations and differential equations, Fibonacci Quart., 1 (1963), 1–8, 19. Search in Google Scholar

[3] W. M. Abd-Elhameed, Y.H. Youssri, N. El-Sissi and M. Sadek, New hypergeometric connection formulae between Fibonacci and chebyshev polynomials, Ramanujan J., 42 (2017), 347–361.10.1007/s11139-015-9712-x Search in Google Scholar

[4] C. M. da Fonseca, Unifying some Pell and Fibonacci identities, Appl. Math. Comput., 236 (2014), 41–42.10.1016/j.amc.2014.03.064 Search in Google Scholar

[5] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart., 3 (1965), 161–176. Search in Google Scholar

[6] A. Şahin and J. L. Ramírez, Determinantal and permanental representations of convolved Lucas polynomials, Appl. Math. Comput., 281 (2016), 314–322.10.1016/j.amc.2016.01.064 Search in Google Scholar

[7] X. Ye and Z. Zhang, A common generalization of convolved generalized Fibonacci and Lucas polynomials and its applications, Appl. Math. Comput., 306 (2017), 31–37.10.1016/j.amc.2017.02.016 Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Matemáticas, Matemáticas generales