Acceso abierto

A two-stage U-net approach to brain tumor segmentation from multi-spectral MRI records


Cite

[1] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, M. Prastawa, et al., Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge, arXiv (2019) 1181.02629v2. ⇒225 Search in Google Scholar

[2] M. Bhalerao, S. Thakur, Brain tumor segmentation based on 3D residual U-net, International MICCAI Brainlesion Workshop, Lecture Notes in Computer Science 11993 (2020) 218–225. ⇒24110.1007/978-3-030-46643-5_21 Search in Google Scholar

[3] Y. Cao, W.F. Zhou, M. Zang, D.L. An, Y. Feng, B. Yu, MBANet: A 3D convolutional neural network with multi-branch attention for brain tumor segmentation from MRI images, Biomedical Signal Processing and Control 80 (2023) 104296. ⇒22610.1016/j.bspc.2022.104296 Search in Google Scholar

[4] Y.K. Chang, Z.Z. Zheng, Y.W. Sun, M.M. Zhao, Y. Lu, Y. Zhang, DPAFNet: A residual dual-path attention-fusion convolutional neural network for multimodal brain tumor segmentation Biomedical Signal Processing and Control 79 (2023) 104037. ⇒22610.1016/j.bspc.2022.104037 Search in Google Scholar

[5] S.C. Chen, C.X. Ding, M.F. Liu, Dual-force convolutional neural networks for accurate brain tumor segmentation, Pattern Recognition 88 (2019) 90–100. ⇒ 24110.1016/j.patcog.2018.11.009 Search in Google Scholar

[6] M.Y. Chung, J.Y. Li, M.K. Lee, J.J. Lee, Y.G. Shin, Deeply self-supervised contour embedded neural network applied to liver segmentation, Computer Methods and Programs in Biomedicine 192 (2020) 105447. ⇒22510.1016/j.cmpb.2020.105447 Search in Google Scholar

[7] Y. Ding, C. Li, Q.Q. Yang, Z. Qin, Z.G. Qin, How to improve the deep residual network to segment multi-modal brain tumor images, IEEE Access 7 (2019) 152821-152831. ⇒24110.1109/ACCESS.2019.2948120 Search in Google Scholar

[8] X.Q. Du, Y.H. Song, Y.G. Liu, Y.P. Zhang, H. Liu, B. Chen, S. Li, An integrated deep learning framework for joint segmentation of blood pool and myocardium, Medical Image Analysis 62 (2020) 101685. ⇒22510.1016/j.media.2020.101685 Search in Google Scholar

[9] N. Gordillo, E. Montseny, P. Sobrevilla, State of the art survey on MRI brain tumor segmentation, Magnetic Resonance Imaging 31 (2013) 1426–1438. ⇒22510.1016/j.mri.2013.05.00223790354 Search in Google Scholar

[10] X. Guo, C. Yang, T. Ma, P. Zhou, S. Lu, N. Ji, D. Li, T. Wang, H. Lv, Brain tumor segmentation based on attention mechanism and multi-model fusion, International MICCAI Brainlesion Workshop, Lecture Notes in Computer Science 11993 (2020) 50–60. ⇒24110.1007/978-3-030-46643-5_5 Search in Google Scholar

[11]Á. Győrfi, L. Szilágyi, L. Kovács, A fully automatic procedure for brain tumor segmentation from multi-spectral MRI records using ensemble learning and atlas-based data enhancement, Applied Sciences 11 (2021) 564. ⇒241, 24210.3390/app11020564 Search in Google Scholar

[12]Á. Győrfi, L. Kovács, L. Szilágyi, A feature ranking and selection algorithm for brain tumor segmentation in multi-spectral magnetic resonance image data, Annual International Conference of IEEE Engineering in Medicine and Biology Society (EMBC) (2019) 804–807. ⇒22710.1109/EMBC.2019.8857794 Search in Google Scholar

[13] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P. M. Jodoin, H. Larochelle, Braintumor segmentationwithdeepneural networks, Medical Image Analxsis 35 (2017) 18–31. ⇒24110.1016/j.media.2016.05.00427310171 Search in Google Scholar

[14] S. Hussain,S.M.Anwar,M.Majid, Segmentation of glioma tumors in brain using deep convolutional neural network, Neurocomputing 282 (2018) 248–261. ⇒24110.1016/j.neucom.2017.12.032 Search in Google Scholar

[15] T. Imtiaz, S. Rifat, S.A. Fattah, K.A. Wahid, Automated brain tumor segmentation based on multi-planar superpixel level features extracted from 3D MR images, IEEE Access 8 (2020) 25335–25349. ⇒22510.1109/ACCESS.2019.2961630 Search in Google Scholar

[16] A. Islam, S. M. S. Reza, K. M. Iftekharuddin, Multifractal texture estimation for detection and segmentation of brain tumors, IEEE Transactions on Biomedical Engineering 60 (2013) 3204–3215. ⇒22510.1109/TBME.2013.2271383512698023807424 Search in Google Scholar

[17] T. Kalaiselvi, P. Kumarashankar, P. Sriramakrishnan, Three-phase automatic brain tumor diagnosis system using patches based updated run length region growing technique, Journal of Digital Imaging 33 (2020) 465–479. ⇒22510.1007/s10278-019-00276-2716523431529237 Search in Google Scholar

[18] K. Kamnitsas, C. Ledig, V.F.J. Newcombe, J.P. Simpson, A.D. Kane, D.K. Menon, D. Rueckert, B. Glocker, Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation, Medical Image Analysis 36 (2017), 61–78. ⇒226, 24110.1016/j.media.2016.10.00427865153 Search in Google Scholar

[19] A. Kőble,Á. Győrfi, Sz. Csaholczi, B. Surányi, L. Dénes-Fazakas, L. Kovács, L. Szilágyi, Identifying the most suitable histogram normalization technique for machine learning based segmentation of multispectral brain MRI data, IEEE AFRICON (2021) 71–76. ⇒22710.1109/AFRICON51333.2021.9570990 Search in Google Scholar

[20] Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521 (2015) 436–444. ⇒ 22510.1038/nature14539 Search in Google Scholar

[21] L. Lefkovits, S. Lefkovits, L. Szilágyi, Brain tumor segmentation with optimized random forest, International MICCAI Brainlesion Workshop, Lecture Notes in Computer Science 10154 (2017) 88–99. ⇒24110.1007/978-3-319-55524-9_9 Search in Google Scholar

[22] S. Lefkovits, L. Lefkovits, L. Szilágyi, Applications of different CNN architectures for palm vein identification, Modeling Decisions for Artificial Intelligence (MDAI), Lecture Notes in Computer Science 11676 (2019) 295–306. ⇒22510.1007/978-3-030-26773-5_26 Search in Google Scholar

[23] S. Lefkovits, L. Lefkovits, L. Szilágyi, HGG and LGG brain tumor segmentation in multi-modal MRI using pretrained convolutional neural networks of Amazon Sagemaker, Applied Sciences 12 (2022) 3620. ⇒24110.3390/app12073620 Search in Google Scholar

[24] Q.N. Li, Z.F. Gao, Q.Y. Wang, J. Xia, H.Y. Zhang, H.L. Zhang, H.F. Liu, S. Li, Glioma segmentation with a unified algorithm in multimodal MRI images, IEEE Access 6 (2018) 9543–9553. ⇒225 Search in Google Scholar

[25] H.X. Liu, G.Q. Huo, Q. Li, X. Guan, M.L. Tseng, Multiscale lightweight 3D segmentation algorithm with attention mechanism: Brain tumor image segmentation, Expert Systems with Applications 214 (2023) 119166. ⇒22610.1016/j.eswa.2022.119166 Search in Google Scholar

[26] P. Macsik, J. Pavlovicova, J. Goga, S. Kajan, Local binary CNN for diabetic retinopathy classification on fundus images, Acta Polytechnica Hungarica 19,7 (2022) 27–45. ⇒22510.12700/APH.19.7.2022.7.2 Search in Google Scholar

[27] G. Mohan, M.M. Subashini, MRI based medical image analysis: Survey on brain tumor grade classification, Biomedical Signal Processing and Control 39 (2018) 139–161. ⇒22410.1016/j.bspc.2017.07.007 Search in Google Scholar

[28] B.H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al., The multimodal brain tumor image segmentation benchmark (BRATS), IEEE Transactions on Medical Imaging 34, 10 (2015) 1993–2024. ⇒225, 22710.1109/TMI.2014.2377694483312225494501 Search in Google Scholar

[29] I. Njeh, L. Sallemi, I. Ben Ayed, K. Chtourou, S. Lehericy, D. Galanaud, A. Ben Hamida, 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach, Computerized Medical Imaging and Graphics 40 (2015) 108–119. ⇒22510.1016/j.compmedimag.2014.10.00925467804 Search in Google Scholar

[30] S. Noguchi, M. Nishio, M. Yakami, K. Nakagomi, K. Togashi, Bone segmentation on whole-body CT using convolutional neural network with novel data augmentation techniques, Computers in Biology and Medicine 121 (2020) 103767. ⇒ 22510.1016/j.compbiomed.2020.10376732339097 Search in Google Scholar

[31] L. G. Nyúl, J. K. Udupa, X. Zhang, New variants of a method of MRI scale standardization, IEEE Trans. Med. Imaging 19, 2 (2000) 143–150. ⇒225, 22710.1109/42.83637310784285 Search in Google Scholar

[32] R. Orellana, E. Monclús,P.Brunet, I. Navazo,A.Bendezú, F. Azpiroz, A scalable approach to T2-MRI colon segmentation, Medical Image Analysis 63 (2020) 101697. ⇒22510.1016/j.media.2020.101697 Search in Google Scholar

[33] A.P. Patel, J.L. Fisher, E. Nichols, F. Abd-Allah, J. Abdella, A. Abdelalim, C.A. Allen, Global, regional, and national burden of brain and other CNS cancer, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016, Lancet Neurology 18 (2019) 376–393. ⇒224 Search in Google Scholar

[34] S.P. Pawar, S.N. Talbar, LungSeg-Net: Lung field segmentation using generative adversarial network, Biomedical Signal Processing and Control 64 (2021) 102296. ⇒22510.1016/j.bspc.2020.102296 Search in Google Scholar

[35] L.M. Pei, S. Bakas, A. Vassough, S.M.S. Reza, C. Davatzikos, K.M. Iftekharuddin, Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion, Biomedical Signal Processing and Control 55 (2020) 101648. ⇒24110.1016/j.bspc.2019.101648 Search in Google Scholar

[36] S. Pereira, A. Pinto, V. Alves, C. A. Silva, Brain tumor segmentation using convolutional neural networks in MRI images, IEEE Transactions on Medical Imaging 35 (2016) 1240–1251. ⇒225, 241, 24210.1109/TMI.2016.253846526960222 Search in Google Scholar

[37] S. Pereira, A. Pinto, J. Amorim, A. Ribeiro, V. Alves, C.A. Silva, Adaptive feature recombination and recalibration for semantic segmentation with fully convolutional networks, IEEE Transactions on Medical Imaging 38 (2019) 2914–2925. ⇒24110.1109/TMI.2019.291809631135354 Search in Google Scholar

[38] A. Pinto, S. Pereira, D. Rasteiro, C. A. Silva, Hierarchical brain tumour segmentation using extremely randomized trees, Pattern Recognition 82 (2018) 105–117. ⇒225, 24110.1016/j.patcog.2018.05.006 Search in Google Scholar

[39] J.M. Pisak-Lukáts, L. Szilágyi, Markov clustering based feature selection for brain tumor segmentation from multi-spectral MRI records, 20th Jubilee IEEE World Symposium on Applied Machine Intelligence and Informatics (SAMI) (2022) 165–170. ⇒22710.1109/SAMI54271.2022.9780855 Search in Google Scholar

[40] F. Rehman, S.I.A. Shah, M. N. Riaz, O.S. Gilani, R. Faiza, A region-based deep level set formulation for vertebral bone segmentation of osteoporotic fractures, Journal of Digital Imaging 33 (2020) 191–203. ⇒22510.1007/s10278-019-00216-0706466231011954 Search in Google Scholar

[41] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, Medical Image Computation and Computer Assisted Interventions (MICCAI), Lecture Notes in Computer Science 9351 (2015) 234–241. ⇒22810.1007/978-3-319-24574-4_28 Search in Google Scholar

[42] J. Sahdeva, V. Kumar, I. Gupta, N. Khandelwal, C. K. Ahuja, A novel content-based active contour model for brain tumor segmentation, Magnetic Resonance Imaging 30 (2012) 694–715. ⇒22510.1016/j.mri.2012.01.00622459443 Search in Google Scholar

[43] M. Soltaninejad, G. Yang, T. Lambrou, N. Allinson, T.L. Jones, T.R. Barrick, F.A. Howe, X.J. Ye, Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels. Computer Methods and Programs in Biomedicine 157 (2018) 69–84. ⇒22510.1016/j.cmpb.2018.01.003 Search in Google Scholar

[44] L. Szilágyi, S.M. Szilágyi, B. Benyó, Efficient inhomogeneity compensation using fuzzy c-means clustering models. Computer Methods and Programs in Biomedicine 108 (2012) 80–89. ⇒225, 22710.1016/j.cmpb.2012.01.005 Search in Google Scholar

[45] L. Szilágyi, L. Lefkovits, B. Benyó, Automatic brain tumor segmentation in multispectral MRI volumes using a fuzzy c-means cascade algorithm, Proc. 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China (2015) 285–291. ⇒22510.1109/FSKD.2015.7381955 Search in Google Scholar

[46] L. Szilágyi, D. Iclănzan, Z. Kapás,Z.Szabó,Á. Győrfi, L. Lefkovits, Low and high grade glioma segmentation in multispectral brain MRI data. Acta Universitatis Sapientiae Informatica 10 (2018) 110–132. ⇒22710.2478/ausi-2018-0007 Search in Google Scholar

[47] T.Y. Tan, L. Zhang, C.P. Lim, Adaptive melanoma diagnosis using evolving clustering, ensemble and deep neural networks, Knowledge-Based Systems 187 (2020) 104807. ⇒22510.1016/j.knosys.2019.06.015 Search in Google Scholar

[48] N. J. Tustison, K. L. Shrinidhi, M. Wintermark, C. R. Durst, B. M. Kandel, J. C. Gee, M. C. Grossman, B. B. Avants, Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR, Neuroinformatics 13 (2015) 209–225. ⇒225, 24110.1007/s12021-014-9245-225433513 Search in Google Scholar

[49] U. Vovk, F. Pernuš, B. Likar, A review of methods for correction of intensity inhomogeneity in MRI, IEEE Trans. Med. Imaging 26 (2007) 405–421. ⇒225, 22710.1109/TMI.2006.89148617354645 Search in Google Scholar

[50] C.L. Wang, M. Oda, Y. Hayashi, Y. Yoshino, T. Yamamoto, A.F. Frangi, K. Mori, Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation, Medical Image Analysis 60 (2020) 101623. ⇒22510.1016/j.media.2019.101623 Search in Google Scholar

[51] F. Wang, R. Jiang, L. Zheng, C. Meng, B. Biswal, 3D U-net based brain tumor segmentation and survival days prediction, International MICCAI Brainlesion Workshop, Lecture Notes in Computer Science 11992 (2020) 131–141. ⇒24110.1007/978-3-030-46640-4_13 Search in Google Scholar

[52] R.R. Wildeboer, R.G.J. van Sloun, H. Wijkstra, M. Mischi, Artificial intelligence in multiparametric prostate cancer imaging with focus on deep-learning methods, Computer Methods and Programs in Biomedicine 189 (2020) 105316. ⇒22510.1016/j.cmpb.2020.105316 Search in Google Scholar

[53] D.Y. Wu, Y. Ding, M.F. Zhang, Q.Q. Yang, Z.G. Qin, Multi-features refinement and aggregation for medical brain segmentation, IEEE Access 8 (2020) 57483–57496. ⇒226, 24110.1109/ACCESS.2020.2981380 Search in Google Scholar

[54] Y. Wu, Z. Yi, Automated detection of kidney abnormalities using multi-feature fusion convolutional neural networks, Knowledge-Based Systems 200 (2020) 105873. ⇒22510.1016/j.knosys.2020.105873 Search in Google Scholar

[55] J. Xue, S. Yan, J.H. Qu, F. Qi, C.G. Qiu, H.Y. Zhang, M.R. Chen, T.T. Liu, D.W. Li, X.Y. Liu, Deep membrane systems for multitask segmentation in diabetic retinopathy. Knowledge-Based Systems 183 (2019) 104887. ⇒22510.1016/j.knosys.2019.104887 Search in Google Scholar

[56] Y. Xue, T. Xu, H. Zhang, L. Long, X.L. Huang, SegAN: Adversarial network with multi-scale L1 loss for medical image segmentation, Neuroinformatics 16 (2018) 383–392. ⇒24110.1007/s12021-018-9377-x Search in Google Scholar

[57] M. Yan, J.X. Guo, W.D. Tian, Z. Yi, Symmetric convolutional neural network for mandible segmentation, Knowledge-Based Systems 159 (2018) 63–71. ⇒22510.1016/j.knosys.2018.06.003 Search in Google Scholar

[58] X.M. Zhao, Y.H. Wu, G.D. Song, Z.Y. Li, Y.Z. Zhang, Y. Fan, A deep learning model integrating FCNNs and CRFs for brain tumor segmentation, Medical Image Analysis 43 (2018) 98–111. ⇒225, 24110.1016/j.media.2017.10.002602962729040911 Search in Google Scholar

[59] H.Y. Zheng, Y.F. Chen, X.D. Yue, C. Ma, X.H. Liu, P.P. Yang, J.P. Lu, Deep pancreas segmentation with uncertain regions of shadowed sets, Magnetic Resonance Imaging 68 (2020) 45–52. ⇒22510.1016/j.mri.2020.01.00831987903 Search in Google Scholar

[60] Z.Q. Zhu, X.Y. He, G.Q. Qi, Y.Y. Li, B.S. Cong, Y. Liu, Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI, Information Fusion 91 (2023) 376–387. ⇒22610.1016/j.inffus.2022.10.022 Search in Google Scholar

eISSN:
2066-7760
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Computer Sciences, other