Acceso abierto

Some aspects of plate number estimation of plate heat exchangers (PHEs). A case study


Cite

[1] Apetrei, I., Ciocan, M. E., Simion, A. I., Gavrilă, L., Modelling of the thermo-physical properties of milk II. Thermal capacity and thermal conductivity. Annals of DAAAM for 2002 & Proceedings of the 13th International DAAAM Symposium “Intelligent Manufacturing & Automatisation: Learning From Nature” Confe rence. 23–26 October 2002, Vienna, Austria. (2002) 15–16. Search in Google Scholar

[2] Bakshi, A. S., Smith, D. E., Effect of fat content and temperature on viscosity in relation of pumping requirements of fluid milk products. Journal of Dairy Science, 67. (1984) 1157–1160.10.3168/jds.S0022-0302(84)81417-4 Search in Google Scholar

[3] Bertsch, A. J., Cerf, O., Dynamic viscosities of milk and cream from 70 to 135 °C. Journal of Dairy Research, 50. (1983) 193–200.10.1017/S0022029900022998 Search in Google Scholar

[4] Bon, J., Clemente, G., Vaquiro, H., Mulet, A., Simulation and optimization of milk pasteurization processes using a general process simulator (ProSimPlus). Computers and Chemical Engineering, 34. (2010) 414–420.10.1016/j.compchemeng.2009.11.013 Search in Google Scholar

[5] Buonopane, R. A., Troupe, R. A., Morgan, A., Heat transfer design method for plate heat exchangers. Chemical Engineering Progress, 59. (1963) 57–61. Search in Google Scholar

[6] Chisholm, D., Wanniarachchi, A. S., Maldistribution in single-pass mixed-channel plate heat exchangers. Compact Heat Exchangers for Power and Process Industries. HTD ASME, 201. (1999) 95–99. Search in Google Scholar

[7] Choi, Y., Okos, M., Effects of temperature and composition on the thermal properties of foods. Food Engineering Process Applications, 1. (1986) 93–101. Search in Google Scholar

[8] Dvorák, V., Vit, T., CAE methods for plate heat exchanger design. Energie Procedia, 134. (2017) 234–243.10.1016/j.egypro.2017.09.613 Search in Google Scholar

[9] Ezgi, C., Basic design methods of heat exchangers. In: Murshed Sohel, M. S., Lopes, M. M. (eds.), Heat exchangers design, experiments and simulation. IntechOpen. (2017). Search in Google Scholar

[10] Fernandez-Martin, F., Influence of temperature and composition on some physical properties of milk and milk concentrates. I. Heat capacity. Journal of Dairy Research, 39. 1. (1972) 65–73.10.1017/S0022029900013856 Search in Google Scholar

[11] Fernández-Martín, F., Influence of temperature and composition on some physical properties of milk and milk concentrates II. Viscosity. Journal of Dairy Research, 39. 1. (1972) 75–82.10.1017/S0022029900013868 Search in Google Scholar

[12] Focke, W. W., Zachariades, J., Olivier, I., The effect of corrugation inclination angle on the thermohydraulic performance of heat plate exchangers. International Journal of Heat and Mass Transfer, 28. 8. (1985) 1469–1479.10.1016/0017-9310(85)90249-2 Search in Google Scholar

[13] Fonyó Zs., Fábry Z., Vegyipari művelettani alapismeretek. Budapest: Nemzeti Tankönyvkiadó. (2004) 404. Search in Google Scholar

[14] Ganea, G., Cojoc, D., Utilaj tehnologic în industria alimentară. Chisinău, Editura Tehnică. (2011) 6–11. Search in Google Scholar

[15] Gavrilă, L., Simion, A., Apetre, I., Modelling of the thermophysical properties of milk I. Density and viscosity. Annals of DAAAM for 2002 & Proceedings of the 13th International DAAAM Symposium “Intelligent Manufacturing & Automatisation: Learning From NatureConference, 23–26 October 2002, Vienna, Austria. 179–180. Search in Google Scholar

[16] Gulenoglu, G., Akturk, F., Aradag, S., Sezer, N., Kakaç, S., Experimental comparison of performances of three different plates for gasketed plate heat exchangers. International Journal of Thermal Sciences, 75. (2014) 249–256.10.1016/j.ijthermalsci.2013.06.012 Search in Google Scholar

[17] Gut, J. A. W., Fernandes, R., Pinto, J. M., Tadini, C. C., Thermal model validation of plate heat exchanger with generalized configuration. Chemical Engineering Science, 59. (2004) 4591–4600.10.1016/j.ces.2004.07.025 Search in Google Scholar

[18] Haslego, C., Polley, G., Designing plate-and-frame heat exchangers. Chemical Engineering Progress, 9. (2002) 32–37. Search in Google Scholar

[19] Heavner, R. L., Kumar, H., Wanniarachchi, A. S., Performance of an industrial plate heat exchanger: Effect of chevron angle. AICHE Symposium Series, 89. (1993) 262–267, 295. Search in Google Scholar

[20] Heldman, R. D., Fundamentals of Food Process Engineering. 3rd ed., New York, Springer Science. (2007) 223–238. Search in Google Scholar

[21] Heldman, R. D., Singh, R. P., Food Process Engineering. 2nd ed., Westport, AVI Publishing. (1981).10.1007/978-94-010-9337-8 Search in Google Scholar

[22] Hu, J., Sari, O., Eicher, S., Rakotozanakajy, R. A., Determination of specific heat of milk at different fat content between 1 and 59 °C using micro DSC. Journal of Food Engineering, 90. (2009) 395–399.10.1016/j.jfoodeng.2008.07.009 Search in Google Scholar

[23] Hwang, C. H., Gunasekaran, S., Specific heat capacity. In: Heldman, D. R., Moraru, Carmen I. (eds.), Encyclopedia of Agricultural, Food, and Biological Engineering. New York, Marcel Dekker. (2003) 1572–1580. Search in Google Scholar

[24] Jackson, B. W., Troupe, R. A., Plate heat exchanger design by ε -NTU method. Chemical Engineering Progress Symposium Series, 62. (1966) 185–190. Search in Google Scholar

[25] Kakaç, S., Hongtan, L., Pramuanjaroenkij, A., Heat exchangers: Selection, rating and thermal design, 4th ed. Boca Raton, CRC Press. (2020).10.1201/9780429469862 Search in Google Scholar

[26] Kakaç, S., Liu, H. Heat exchangers: Selection, rating and thermal design. 2nd ed. Boca Raton, CRC Press. (2002) 394. Search in Google Scholar

[27] Kessler, H. G., Food and bio process engineering: Dairy technology. Münich, Verlag Kessler. (2002). Search in Google Scholar

[28] Kreith, F. Mechanical engineering handbook. Boca Raton, CRC Press. (1999).10.1201/NOE0849397516 Search in Google Scholar

[29] Kumar, H., The plate heat exchanger: Construction and design. 1st UK National Conference of Heat Transfer, 86. (1984) 1275–1286. Search in Google Scholar

[30] Lewis, M. J., Physical properties of foods and food processing systems. Cambridge, Woodhead Publishing. (2006). Search in Google Scholar

[31] Macovei, V., Calcule de operaţii şi utilaje pentru precesarea termică şi biochimică în biotehnologie. Galaţi, Editura Alma. (2001) 59. Search in Google Scholar

[32] Madoumier, M., Azzaro-Pantel, C., Tanguy, G., Gésan-Guiziou, G., Modelling the properties of liquid foods for use of process flowsheeting simulators: Application to milk concentration. Journal of Food Engineering, 164. (2015) 70–89. Search in Google Scholar

[33] Mariott, J., Where and how to use plate heat exchangers. Chemical Engineering, 78. 8. (1971) 127–133. Search in Google Scholar

[34] Maroulis, Z. B., Saravacos, G. D., Food process design. New York, Marcel Dekker. (2003).10.1201/9780203912010 Search in Google Scholar

[35] McCarthy, O. J., Singh, H., Physico-chemical properties of milk. In: McSweeney, P., Fox, P. (eds.), Advanced dairy chemistry. Volume 3: Lactose, water, salts, and minor constituents. New York, Springer. (1980) 707–758. Search in Google Scholar

[36] Minim, L. A., Coimbra, J. S. R., Minim, V. P. R., Telis-Romero, J., Influence of temperature and water and fat contents on the thermophysical properties of milk. Journal of Chemical Engineering Data, 47. (2002) 1488–1491.10.1021/je025546a Search in Google Scholar

[37] More, G. R., Prasad, S., Thermal conductivity of concentrated whole milk. Journal of Food Process Engineering, 10. 2. (1988) 105–112.10.1111/j.1745-4530.1988.tb00007.x Search in Google Scholar

[38] Morison, K. R., Phelan, J. P., Bloore, C. G., Viscosity and non-Newtonian behavior of concentrated milk and cream. International Journal of Food Properties, 16. (2013) 882–894.,10.1080/10942912.2011.573113 Search in Google Scholar

[39] Mota, F. A. S., Carvalho, E. P., Ravagnani, M. A. S. S., Modeling and design of plate heat exchanger. In: Kazi, S. N. (ed.), Heat transfer studies and applications. IntechOpen. (2015) 165–199. Search in Google Scholar

[40] Muley, A., Manglik, R. M., Enhanced heat transfer characteristics of single-phase flows in a plate heat exchanger with mixed Chevron plates. Journal of Enhanced Heat Transfer, 4. 3. (1997) 187–201.10.1615/JEnhHeatTransf.v4.i3.30 Search in Google Scholar

[41] Muley, A., Manglik, R. M., Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates. Journal of Heat Transfer, 121. (1999) 110–117.10.1115/1.2825923 Search in Google Scholar

[42] Munir, M. T., Yu, Z., Wilson, D. I., Young, B. R., Virtual milk for modelling and simulation of dairy processes. Journal Dairy Science, 99. (2016) 3380–3395.10.3168/jds.2015-1044926971156 Search in Google Scholar

[43] Neagu, A. A., Koncsag, C., Bărbulescu, A., Botez, E., Calculation methods for gasket plate heat exchangers used in vegetable oil manufacture. Revista de Chimie, 66. 9. (2014) 1503–1509. Search in Google Scholar

[44] Okada, K. Ono, M., Tominura, T., Konno, H., Ohtani, S., Design and heat transfer characteristics of new plate heat exchanger. Heat Transfer – Japanese Research, 1. 1. (1972) 90–95. Search in Google Scholar

[45] Phipps, L. W., The interrelationship of the viscosity, fat content and temperature of cream between 40 and 80 °C. Journal of Dairy Research, 36. (1969) 417–426.10.1017/S0022029900012930 Search in Google Scholar

[46] Rao, M. A., Rizvi, S. S. H., Datta, A. K., Engineering properties of foods. Boca Raton, CRC Press. (2005). Search in Google Scholar

[47] Riedel, L., Thermal conductivity measurements on sugar solution, fruit juice and milk. Chemie Ingenieur Technik, 21. 17. (1949) 340–341.10.1002/cite.330211706 Search in Google Scholar

[48] Roetzel, W., Luo, X., Chen, D. Design and operation of heat exchangers and their networks. London, Elsevier Academic Press. (2020).10.1016/B978-0-12-817894-2.00005-4 Search in Google Scholar

[49] Rohm, H., Müller, A., Hend-Milnera, I., Effect of composition of raw milk viscosity. Milchwissenschaft, 51. (1996) 259–261. Search in Google Scholar

[50] Shah, R. K., Sekulić, D. P., Fundamentals of heat exchanger design. Hoboken, Wiley. (2002).10.1002/9780470172605 Search in Google Scholar

[51] Singh, P. R., Heldman, D. R., Introduction to Food Engineering. 5th ed. Amsterdam, Elsevier-Academic Press. (2013). Search in Google Scholar

[52] Stephan, P. (ed.), VDI Heat Atlas. Berlin–Heidelberg, Springer-Verlag. (2010). Search in Google Scholar

[53] Stoica, A., Stroescu, M., Dobre, T., Floarea, O., Operaţii termice in industria alimentară. Bucharest: Politehnica Press. (2007) 184. Search in Google Scholar

[54] Thulukkanam, K., Heat exchanger thermal design. In: Thulukkanam, K., Heat exchanger design handbook, 2nd ed. Boca Raton, CRC Press. (2013) 117–144. Search in Google Scholar

[55] Thulukkanam, K., Plate heat exchangers and spiral plate heat exchangers. In: Thulukkanam, K., Heat exchanger design handbook. 2nd ed. Boca Raton, CRC Press. (2013) 393–432. Search in Google Scholar

[56] Wang, L., Sunden, B., Manglik, R. M., Plate heat exchangers: Design, applications and performance. Southampton–Boston, WIT Press. (2007). Search in Google Scholar

[57] Watson, P. D., Tittsler, R. P., Densité du lait aux bases températures. Journal of Dairy Science, 44. 416–424. (1961).10.3168/jds.S0022-0302(61)89758-0 Search in Google Scholar

[58] Wright, A. D., Heggs, P. J., Calculation of new plate heat exchanger effectiveness and pressure drop using existing performance data. Chemical Engineering Research and Design, 4. (2002) 1–9. Search in Google Scholar

eISSN:
2066-7744
Idioma:
Inglés