Cite

[1] Baccouri, O. et al., Probiotic potential and safety evaluation of Enterococcus faecalis OB14 and OB15, isolated from traditional Tunisian Testouri cheese and Rigouta, using physiological and genomic analysis. Frontiers in Microbiology, 10. (2019) 881. https://doi.org/10.3389/fmicb.2019.00881.10.3389/fmicb.2019.00881Search in Google Scholar

[2] Belicová, A., Mikulášová, M., Dušinský, R., Probiotic potential and safety properties of Lactobacillus plantarum from Slovak Bryndza cheese. BioMed Research International, 2. (2013).10.1155/2013/760298Search in Google Scholar

[3] Ben Said, L., Gaudreau, H., Dallaire, L., Tessier, M., Fliss I., Bioprotective culture: A new generation of food additives for the preservation of food quality and safety. Industrial Biotechnology, 15. 3. (2019) 138–147.Search in Google Scholar

[4] EFSA. Opinion of the scientific panel on biological hazards on Bacillus cereus and other Bacillus spp. in foodstuffs. EFSA Journal, 175. (2005) 1–48.Search in Google Scholar

[5] Gao, Z., Daliri, E. B., Wang, J., Liu, D., Chen, S., Ye, X., Ding, T., Inhibitory effect of lactic acid bacteria on foodborne pathogens: A review. Journal of Food Protection, 82. 3. (2019) 441–453. https://doi.org/10.4315/0362-028X.JFP-18-303.10.4315/0362-028X.JFP-18-303Search in Google Scholar

[6] Hanchi, H., Mottawea, W., Sebei, K., Hammami, R., The genus Enterococcus: Between probiotic potential and safety concerns – An update. Frontiers in Microbiology, 9. (2018) 1791. https://doi.org/10.3389/fmicb.2018.01791.10.3389/fmicb.2018.01791Search in Google Scholar

[7] Heperkan, D., Daskaya-Dikmen, C., Bayram, B., Evaluation of lactic acid bacterial strains of boza for their exopolysaccharide and enzyme production as a potential adjunct culture. Process Biochemistry, 49. 10. (2014) 1587–1594. https://doi.org/10.1016/j.procbio.2014.06.012.10.1016/j.procbio.2014.06.012Search in Google Scholar

[8] Laslo, É., György, É., Evaluation of the microbiological quality of some dairy products. Acta Universitatis Sapientiae – Alimentaria, 11. (2018) 27–44. https://doi.org/10.2478/ausal-2018-0002.10.2478/ausal-2018-0002Search in Google Scholar

[9] Lourens-Hattingh, A., Viljoen, B. C., Growth and survival of a yeast in dairy products. Food Research International, 34. 9. (2001) 791–796.10.1016/S0963-9969(01)00085-0Search in Google Scholar

[10] Lv, X., Miao, L., Ma, H., Bai, F., Lin, Y., Sun, M., Li, J., Purification, characterization and action mechanism of plantaricin JY22, a novel bacteriocin against Bacillus cereus produced by Lactobacillus plantarum JY22 from golden carp intestine. Food Science and Biotechnology, 27. 3. (2017) 695–703. https://doi.org/10.1007/s10068-017-0280-2.10.1007/s10068-017-0280-2604967330263795Search in Google Scholar

[11] Montoro, B. P., Benomar, N., Lavilla Lerma, L., Castillo Gutiérrez, S., Gálvez, A., Abriouel, H., Fermented Aloreña table olives as a source of potential probiotic Lactobacillus pentosus strains. Frontiers in Microbiology, 7. (2016) 1583. https://doi.org/10.3389/fmicb.2016.01583.10.3389/fmicb.2016.01583505400727774088Search in Google Scholar

[12] Motahari, P., Mirdamadi, S., Kianirad, M., Safety evaluation and antimicrobial properties of Lactobacillus pentosus 22C isolated from traditional yogurt. Food Measure, 11. (2017) 972–978. https://doi.org/10.1007/s11694-017-9471-z.10.1007/s11694-017-9471-zSearch in Google Scholar

[13] Narbad, A., Wang, G., Lactic acid bacteria and foodborne pathogens. In: Chen, W., Narbad, A., Lactic acid bacteria in foodborne hazards reduction. Singapore, Springer Nature. (2018).Search in Google Scholar

[14] Ponomarova, O. et al., Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Systems, 5. 4. (2017) 345–357. https://doi.org/10.1016/j.cels.2017.09.002.10.1016/j.cels.2017.09.002566060128964698Search in Google Scholar

[15] Ruiz Rodríguez, L., Bleckwedel, J., Eugenia Ortiz, M., Pescuma, M., Mozzi, F., Lactic acid bacteria. In: C. Wittmann, J. C. Liao (ed.), Industrial Biotechnology : Microorganisms. Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA. (2017).Search in Google Scholar

[16] Siedler, S., Balti, R., Neves, A. R., Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Current Opinion in Biotechnology, 56. (2019) 138–146. https://doi.org/10.1016/j.copbio.2018.11.015.10.1016/j.copbio.2018.11.01530504082Search in Google Scholar

[17] Siedler, S., Rau, M. H., Bidstrup, S., Vento, J. M., Aunsbjerg, S. D., Bosma, E. F., McNair, L. M., Beisel, C. L., Neves, A. R., Competitive exclusion is a major bioprotective mechanism of lactobacilli against fungal spoilage in fermented milk products. Applied and Environmental Microbiology, 86. (2020) 1–14.10.1128/AEM.02312-19708258332005739Search in Google Scholar

[18] Sieuwerts, S., Bron, P. A., Smid, E. J., Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation. LWT – Food Science and Technology, 90. (2018) 201–206.10.1016/j.lwt.2017.12.022Search in Google Scholar

[19] Silvetti, T., Morandi, S., Brasca, M., Biopreservation potential of Enterococcus faecalis isolated from Italian traditional raw milk cheeses. CyTA – Journal of Food, 12. (2014) 210–217. https://doi.org/10.1080/19476337.2013.825327.10.1080/19476337.2013.825327Search in Google Scholar

[20] Todorov, S. D., Chikindas, M. C., Lactic acid bacteria bacteriocins and their impact on human health. In: M. A. C. de Albuquerque, A. de Moreno de LeBlanc, J. G. LeBlanc, R. Bedani (eds.), Lactic acid bacteria. A functional approach. Boca Raton: CRC Press. (2020).Search in Google Scholar

[21] Tristezza, M., di Feo, L., Tufariello, M., Grieco, F., Capozzi, V., Spano, G., Mita, G., Simultaneous inoculation of yeasts and lactic acid bacteria: Effects on fermentation dynamics and chemical composition of Negroamaro wine. LWTFood Science and Technology, 66. (2016) 406–412.Search in Google Scholar

[22] Wade, M. E., Strickland, M. T., Osborne, J. P., Edwards, C. G., Role of Pediococcus in winemaking. Australian Journal of Grape and Wine Research. (2018) https://doi.org/10.1111/ajgw.12366.10.1111/ajgw.12366Search in Google Scholar

[23] Yi, L., Qi, T., Ma, J., Zeng, K., Genome and metabolites analysis reveal insights into control of foodborne pathogens in fresh-cut fruits by Lactobacillus pentosus MS031 isolated from Chinese Sichuan Paocai. Postharvest Biology and Technology, 164. (2020) 111150. https://doi.org/10.1016/j.postharvbio.2020.111150.10.1016/j.postharvbio.2020.111150Search in Google Scholar

[24] Zhang, Q., Lactic acid bacteria and bacteriocins. In: W. Chen, Lactic acid bacteria. Singapore, Springer. (2019).Search in Google Scholar

[25] Zhang, Z., Tao, X., Shah, N. P., Wei, H., Antagonistics against pathogenic Bacillus cereus in milk fermentation by Lactobacillus plantarum ZDY2013 and its anti-adhesion effect on Caco-2 cells against pathogens. Journal of Dairy Science, 99. 4. (2016). 2666–2674. https://doi.org/10.3168/jds.2015-10587.10.3168/jds.2015-1058726830743Search in Google Scholar

eISSN:
2066-7744
Idioma:
Inglés