Acceso abierto

Edge metric dimension of some classes of circulant graphs

,  y   
28 dic 2020

Cite
Descargar portada

Let G = (V (G), E(G)) be a connected graph and x, yV (G), d(x, y) = min{ length of x − y path } and for eE(G), d(x, e) = min{d(x, a), d(x, b)}, where e = ab. A vertex x distinguishes two edges e1 and e2, if d(e1, x) ≠ d(e2, x). Let WE = {w1, w2, . . ., wk} be an ordered set in V (G) and let eE(G). The representation r(e | WE) of e with respect to WE is the k-tuple (d(e, w1), d(e, w2), . . ., d(e, wk)). If distinct edges of G have distinct representation with respect to WE, then WE is called an edge metric generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by edim(G). The circulant graph Cn(1, m) has vertex set {v1, v2, . . ., vn} and edge set {vivi+1 : 1 ≤ in−1}∪{vnv1}∪{vivi+m : 1 ≤ in−m}∪{vn−m+ivi : 1 ≤ im}. In this paper, it is shown that the edge metric dimension of circulant graphs Cn(1, 2) and Cn(1, 3) is constant.

Idioma:
Inglés
Calendario de la edición:
3 veces al año
Temas de la revista:
Matemáticas, Matemáticas generales