Acceso abierto

Kohn-Vogelius formulation and high-order topological asymptotic formula for identifying small obstacles in a fluid medium


Cite

[1] G. Alessandrini and A. Diaz Valenzuela, Unique determination of multiple cracks by two measurements, SIAM. J. Control Optim. 34 (3), 1996, 913-921.10.1137/S0363012994262853Search in Google Scholar

[2] G. Alessandrini, E. Beretta and S. Vessela Determining linear cracks by boundary measurements: Lipschitz stability, SIAM J. Math. Anal. 27, 1996, 361-375.10.1137/S0036141094265791Search in Google Scholar

[3] S. Andrieux and A. Ben Abda Identification of planar cracks by complete overdetermined data: inversion formulae, Inverse Problems, 12, 1996, 553-563.10.1088/0266-5611/12/5/002Search in Google Scholar

[4] A. Ben Abda, H. Ben Ameur and M. Jaoua Identification of 2D cracks by elastic boundary measurements, Inverse Problems 15, 1999, 67-77.10.1088/0266-5611/15/1/011Search in Google Scholar

[5] N. Nishimura and S. Kobayashi A boundary integral equation method for an inverse problem related to crack detection, Int. J. Num. Methods Eng., 32(1991), pp. 1371-1387.10.1002/nme.1620320702Search in Google Scholar

[6] H. Ammari, S. Moskow, and M. Vogelius, Boundary integral formulas for reconstruction of electromagnetic imperfections of small diameter, ESAIM, Cont. Opt. Cal. Variat. vol. 9, 2004, 49-66.10.1051/cocv:2002071Search in Google Scholar

[7] M. Vogelius, and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities, Math. Model. Numer. Anal. 34 (2000), 723-748.10.1051/m2an:2000101Search in Google Scholar

[8] E. Beretta, E. Francini, and M. Vogelius, Asymptotic formulas for for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis, J. Math. Pures Appl. 82, 2003, 1277-1301.10.1016/S0021-7824(03)00081-3Search in Google Scholar

[9] D.J. Cedio-Fengya, S. Moskow, and M. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Problems. vol. 14, 1998, 553-595.10.1088/0266-5611/14/3/011Search in Google Scholar

[10] A. Friedman, and M. Vogelius, Identification of small inhomogeneties of extreme conductivity by boundary measurements: a theorem on continuous dependence, Arch. Rat. Mech. Anal., 105, 1989, 299-326.10.1007/BF00281494Search in Google Scholar

[11] C. Alves, and H. Ammari, Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium, SIAM, J. Appl. Math. 62, 2001, 94-106.10.1137/S0036139900369266Search in Google Scholar

[12] H. Ammari, H. Kang, G. Nakamura and K. Tanuma, Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion, J. Elasticity 67, 2002, 97-129.10.1142/9789812776228_0112Search in Google Scholar

[13] H. Ammari, M. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to presence of inhomogeneities of small diameter II. The full Maxwell’s equations, J. Math. Pures Appl. 80, 2001, 769-814.10.1016/S0021-7824(01)01217-XSearch in Google Scholar

[14] F. Caubet, M. Dambrine, D. Kateb, and C. Z. Timimoun, A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid. Inverse Probl. Imaging, 7(1):123-157, (2013).10.3934/ipi.2013.7.123Search in Google Scholar

[15] S. Andrieux, T.N. Baranger, A. Ben Abda, Solving Cauchy problems by minimizing an energy-like functional Inverse Problems, 22 (2006) 115-134.10.1088/0266-5611/22/1/007Search in Google Scholar

[16] S. Garreau, Ph. Guillaume, M. Masmoudi, The topological asymptotic for PDE systems: The elastics case, SIAM J. contr. Optim. 39(6), 1756-1778, (2001).10.1137/S0363012900369538Search in Google Scholar

[17] Ph. Guillaume and K. Sid Idris, The topological asymptotic expansion for the Dirichlet Problem. SIAM J. Control. Optim. 41, 1052-1072, (2002).10.1137/S0363012901384193Search in Google Scholar

[18] Ph. Guillaume, K. Sid Idris, Topological sensitivity and shape optimization for the Stokes equations, SIAM J. Control Optim. 43 (1) 1-31, (2004).10.1137/S0363012902411210Search in Google Scholar

[19] M. Hassine, Shape optimization for the Stokes equations using topological sensitivity analysis. ARIMA, 5:216-229, (2006).10.46298/arima.1865Search in Google Scholar

[20] S. Amstutz, The topological asymptotic for the Navier-Stokes equations. ESAIM Control Optim. Calc. Var., 11(3):401-425 (electronic), (2005).10.1051/cocv:2005012Search in Google Scholar

[21] M. Abdelwahed, M. Hassine, Topological optimization method for a geometric control problem in Stokes flow. Appl. Numer. Math. 59(8), 1823-1838, (2009).10.1016/j.apnum.2009.01.008Search in Google Scholar

[22] M. Hassine, M. Masmoudi, The topological asymptotic expansion for the quasi-Stokes problem. ESAIM. Control, Optimisation and Calculus of Variations, vol. 10, no. 4, pp. 478-504, 2004.10.1051/cocv:2004016Search in Google Scholar

[23] M. Masmoudi, J. Pommier, and B. Samet, The topological asymptotic expansion for the Maxwell equations and some applications. Inverse Problems, 21(2):547-564, (2005).10.1088/0266-5611/21/2/008Search in Google Scholar

[24] S.T. Chung and T.H. Kwon, Numerical simulation of fiber orientation in injection moulding of short-fiber-reinforced thermoplastics, Polym. Eng. Sci. 7 (35), 1995, 604-618.10.1002/pen.760350707Search in Google Scholar

[25] X. Fan, N. Phan-Thien and R. Zheng, A direct simulation of fiber suspensions, J. Non-Newtonian Fluid Mech. 74, 1998), 113-135.10.1016/S0377-0257(97)00050-5Search in Google Scholar

[26] T. Gotz, Simulating particles in Stokes flow, J. Comput. Appl. Math. 175 (2005), 415-427.10.1016/j.cam.2004.06.019Search in Google Scholar

[27] C. Pozrikidis, Dynamic simulation of the flow of suspensions of two-dimensional particles with arbitrary shapes, Eng. Anal. Boundary Elements 25 (1) (2001), pp.19-30.10.1016/S0955-7997(00)00045-XSearch in Google Scholar

[28] H. Zhou and C. Pozrikidis, Adaptive singularity method for Stokes flow past particles, J. Comput. Phys. 117 (1995), pp. 79-89.10.1006/jcph.1995.1046Search in Google Scholar

[29] R. Codina, U. Scha er and E. Oñate, Mould filling simulation using finite elements, Int. J. Numer. Meth. Fluid Flow 4, 1994, 291-310.10.1108/EUM0000000004108Search in Google Scholar

[30] G. Dhatt, D.M. Gao, A. Ben Cheikh, A finite element simulation of metal flow in moulds, Int. J. Numer. Meth. Eng. 30, 1990, 821-831.10.1002/nme.1620300416Search in Google Scholar

[31] K.M. Shyue, A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state, J. Comput. Phys. 156 (1999), pp. 43-88.10.1006/jcph.1999.6349Search in Google Scholar

[32] A. Ben Abda, M. Hassine, M. Jaoua, M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow,SIAM J. Contr. Optim, 2871-2900, (2009).10.1137/070704332Search in Google Scholar

[33] F. Caubet, M. Dambrine, Localization of small obstacles in Stokes flow. Inverse Problems, 28(10):105007, 31, (2012).10.1088/0266-5611/28/10/105007Search in Google Scholar

[34] L. Afraites, M. Dambrine, K. Eppler AND K.Kateb, Detecting perfectly insulated obstacles by shape optimization techniques of order two., Discrete Contin.Dyn. Syst., no 8(2), 389-416, (2007).10.3934/dcdsb.2007.8.389Search in Google Scholar

eISSN:
1844-0835
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Mathematics, General Mathematics