Acceso abierto

On iterative fixed point convergence in uniformly convex Banach space and Hilbert space

 y   
30 jul 2013

Cite
Descargar portada

Some fixed point convergence properties are proved for compact and demicompact maps acting over closed, bounded and convex subsets of a real Hilbert space. We also show that for a generalized nonexpansive mapping in a uniformly convex Banach space the Ishikawa iterates con- verge to a fixed point. Finally, a convergence type result is established for multivalued contractive mappings acting on closed subsets of a com- plete metric space. These are extensions of results in Ciric, et. al. [7], Panyanak [2] and Agarwal, et. al. [9].

Idioma:
Inglés
Calendario de la edición:
3 veces al año
Temas de la revista:
Matemáticas, Matemáticas generales