Cite

[1]. Z. Rozmer, P. Perjési, Naturally occurring chalcones and their biological activities, Phytochemistry Reviews 15 (2016) 87–120. DOI: 10.1007/s11101-014-9387-8 Search in Google Scholar

[2]. K. Zhou, S. Yang, S.M. Li, Naturally occurring prenylated chalcones from plants: structural diversity, distribution, activities and biosynthesis, Natural Product Reports 38 (2021) 2236–2260. DOI: 10.1039/D0NP00083C Search in Google Scholar

[3]. E.P.T. Leitão, Chalcones: Retrospective synthetic approaches and mechanistic aspects of a privileged scaffold, Current Pharmaceutical Design 26 (2020) 2843–2858. DOI: 10.2174/1381612826666200403124259 Search in Google Scholar

[4]. A. Rammohan, J.S. Reddy, G. Sravya, C.N. Rao, G.V. Zyryanov, Chalcone synthesis, properties and medicinal applications: a review, Environmental Chemistry Letters 18 (2020) 433–458. DOI: 10.1007/s10311-019-00959-w Search in Google Scholar

[5]. G. Roman, Selected Michael additions to thiophene-containing analogues of chalcone, Revue Roumaine de Chimie 60 (2015) 751–760. Search in Google Scholar

[6]. H.M.T. Albuquerque, C.M.M. Santos, J.A.S. Cavaleiro, A.M.S. Silva, Chalcones as versatile synthons for the synthesis of 5- and 6-membered nitrogen heterocycles, Current Organic Chemistry 18 (2014) 2750–2775. DOI: 10.2174/1385272819666141013224253 Search in Google Scholar

[7]. C. Zhuang, W. Zhang, C. Sheng, W. Zhang, C. Xing, Z. Miao, Chalcone: a privileged structure in medicinal chemistry, Chemical Reviews 117 (2017) 7762–7810. DOI: 10.1021/acs.chemrev.7b00020 Search in Google Scholar

[8]. B. Salehi, C. Quispe, I. Chamkhi, N. El Omari, A. Balahbib, J. Sharifi-Rad, A. Bouyahya, M. Akram, M. Iqbal, A.O. Docea, C. Caruntu, G. Leyva-Gómez, A. Dey, M. Martorell, D. Calina, V. López, F. Les, Pharmacological properties of chalcones: a review of preclinical including molecular mechanisms and clinical evidence, Frontiers in Pharmacology 11 (2021) 592654. DOI: 10.3389/fphar.2020.592654 Search in Google Scholar

[9]. T. Constantinescu, C.N. Lungu, Anticancer activity of natural and synthetic chalcones, International Journal of Molecular Sciences 22 (2021) 11306. DOI: 10.3390/ijms222111306 Search in Google Scholar

[10]. P. Thapa, S.P. Upadhyay, W.Z. Suo, V. Singh, P. Gurung, E.S. Lee, R. Sharma, M. Sharma, Chalcone and its analogs: therapeutic and diagnostic applications in Alzheimer’s disease, Bioorganic Chemistry 108 (2021) 104681. DOI: 10.1016/j.bioorg.2021.104681 Search in Google Scholar

[11]. A.T. Bale, U. Salar, K.M. Khan, S. Chigurupati, T. Fasina, F. Ali, M. Ali, S. Sekhar Nanda, M. Taha, S. Perveen, Chalcones and bis-chalcones analogs as DPPH and ABTS radical scavengers, Letters in Drug Design and Discovery 18 (2021) 249–257. DOI: 10.2174/1570180817999201001155032 Search in Google Scholar

[12]. R.F.A. Azeez, S. Zara, A. Ricci, S. Dev, A. Vengamthodi, F.S. Kavully, R.A. Abdu, K.T. Kalathil, M.A. Abdelgawad, B. Mathew, S. Carradori, Integrating N-alkyl amide in the chalcone framework: synthesis and evaluation of its anti-proliferative potential against AGS cancer cell line, Research on Chemical Intermediates 49 (2023) 203–220. DOI: 10.1007/s11164-022-04864-w Search in Google Scholar

[13]. R.M. Hassan, M.E. Aboutabl, M. Bozzi, M.F. El-Behairy, A.M. El Kerdawy, B. Sampaolese, C. Desiderio, F. Vincenzoni, F. Sciandra, I.A.Y. Ghannam, Discovery of 4-benzyloxy and 4-(2- phenylethoxy) chalcone fibrate hybrids as novel PPARα agonists with anti-hyperlipidemic and antioxidant activities: design, synthesis and in vitro/in vivo biological evaluation, Bioorganic Chemistry 115 (2021) 105170. DOI: 10.1016/j.bioorg.2021.105170 Search in Google Scholar

[14]. P. Rawat, R.N. Singh, A. Ranjan, A. Gautam, S. Trivedi, M. Kumar, Study of antimicrobial and antioxidant activities of pyrrole-chalcones, Journal of Molecular Structure 1228 (2021) 129483. DOI: 10.1016/j.molstruc.2020.129483 Search in Google Scholar

[15]. J.M. Oh, T.M. Rangarajan, R. Chaudhary, N. Gambacorta, O. Nicolotti, S. Kumar, B. Mathew, H. Kim, Aldoxime- and hydroxy-functionalized chalcones as highly potent and selective monoamine oxidase-B inhibitors, Journal of Molecular Structure 1250 (2022) 131817. DOI: 10.1016/j.molstruc.2021.131817 Search in Google Scholar

[16]. M. Bürgi, P. Hernández, M. Cabrera, H. Cerecetto, M. González, R. Kratje, A. Raimondi, M. Oggero, M. Bollati-Fogolín, Identification and characterization of human interferon alpha inhibitors through a WISH cell line-based reporter gene assay, Bioorganic Chemistry 94 (2020) 103372. DOI: 10.1016/j.bioorg.2019.103372 Search in Google Scholar

[17]. C.P. Shah, P.S. Kharkar, Discovery of novel human inosine 5′-monophosphate dehydrogenase 2 (hIMPDH2) inhibitors as potential anticancer agents, European Journal of Medicinal Chemistry 158 (2018) 286–301. DOI: 10.1016/j.ejmech.2018.09.016 Search in Google Scholar

[18]. A.T. Bale, K.M. Khan, U. Salar, S. Chigurupati, T. Fasina, F. Ali, Kanwal, A. Wadood, M. Taha, S. Sekhar Nanda, M. Ghufran, S. Perveen, Chalcones and bis-chalcones: as potential α-amylase inhibitors; synthesis, in vitro screening, and molecular modelling studies, Bioorganic Chemistry 79 (2018) 179–189. DOI: 10.1016/j.bioorg.2018.05.003 Search in Google Scholar

[19]. F.R. Bou-Hamdan, F. Lévesque, A.G. O’Brien, P.H. Seeberger, Continuous flow photolysis of aryl azides: preparation of 3H-azepinones, Beilstein Journal of Organic Chemistry 7 (2011) 1124–1129. DOI: 10.3762/bjoc.7.129 Search in Google Scholar

[20]. V.R. Kamalraj, S. Senthil, P. Kannan, One-pot synthesis and the fluorescent behavior of 4-acetyl- 5-methyl-1,2,3-triazole regioisomers, Journal of Molecular Structure 892 (2008) 210–215. DOI: 10.1016/j.molstruc.2008.05.028 Search in Google Scholar

[21]. C. Paizs, M. Toşa, C. Majdik, P. Moldovan, L. Novák, P. Kolonits, A. Marcovici, F.-D. Irimie, L. Poppe, Optically active 1-(benzofuran-2- yl)ethanols and ethane-1,2-diols by enantiotopic selective bioreductions, Tetrahedron: Asymmetry 14 (2003) 1495–1501. DOI: 10.1016/S0957-4166(03)00222-2 Search in Google Scholar

[22]. C.H.A. Rajeena, V. Kamat, V.B. Patil, S.P. Nayak, S. Khanapure, D.A. Barretto, S.K. Vootla, Synthesis and antibacterial evaluation of pyrazolines carrying (benzyloxy)benzaldehyde moiety, Journal of the Iranian Chemical Society 19 (2022) 1641–1650. DOI: 10.1007/s13738-021-02403-9 Search in Google Scholar

[23]. G.L. Xi, Z.Q. Liu, Antioxidant effectiveness generated by one or two phenolic hydroxyl groups in coumarin-substituted dihydropyrazoles, European Journal of Medicinal Chemistry 68 (2013) 385–393. DOI: 10.1016/j.ejmech.2013.06.059 Search in Google Scholar

[24]. A. Saeed, P.A. Mahesar, P.A. Channar, F.A. Larik, Q. Abbas, M. Hassan, H. Raza, S.-Y. Seo, Hybrid pharmacophoric approach in the design and synthesis of coumarin linked pyrazolinyl as urease inhibitors, kinetic mechanism and molecular docking, Chemistry and Biodiversity 14 (2017) e1700035. DOI: 10.1002/cbdv.201700035 Search in Google Scholar

[25]. S. Poplata, A. Tröster, Y.Q. Zou, T. Bach, Recent advances in the synthesis of cyclobutanes by olefin [2+2] photocycloaddition reactions, Chemical Reviews, 116 (2016) 9748–9815. DOI: 10.1021/acs.chemrev.5b00723 Search in Google Scholar

[26]. T. Ishigami, T. Murata, T. Endo, The solution photodimerization of (E)-p-nitrocinnamates, Bulletin of the Chemical Society of Japan 49 (1976) 3578–3583. DOI: 10.1246/bcsj.49.3578 Search in Google Scholar

[27]. I.G. Ovchinnikova, O.V. Fedorova, E.G. Matochkina, M.I. Kodess, P.A. Slepukhin, G.L. Rusinov, Photochemical transformations of chalcone-podands into cyclobutane-containing benzocrown ethers, Russian Chemical Bulletin 58 (2009) 1180–1191. DOI: 10.1007/s11172-009-0154-8 Search in Google Scholar

[28]. T. Lei, C. Zhou, M.Y. Huang, L.M. Zhao, B. Yang, C. Ye, H. Xiao, Q.Y. Meng, V. Ramamurthy, C.H.Tung, L.Z. Wu, General and efficient intermolecular [2+2] photodimerization of chalcones and cinnamic acid derivatives in solution through visible-light catalysis, Angewandte Chemie, International Edition 56 (2017) 15407–15410. DOI: 10.1002/anie.201708559 Search in Google Scholar

[29]. D.A. Ben-Efraim, B.S. Green, The use of midpoints or average NMR chemical shifts in stereochemical assignments, Tetrahedron. 30 (1974) 2357–2364. DOI: 10.1016/S0040-4020(01)97104-2 Search in Google Scholar

[30]. D. Cesarin-Sobrinho, J.C. Netto-Ferreira, Fotoquímica de chalconas fluoradas no estado sólido (in Portuguese), Química Nova 25 (2002) 62–68. DOI: 10.1590/S0100-40422002000100012 Search in Google Scholar

eISSN:
2286-038X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Chemistry, other