Acceso abierto

End-of-life mobile phones parts contain toxic metals that make them hazardous, but can also serve as resource reserves for such metals


Cite

[1]. N. Gupta, A. Trivedi, S. Hait, Materials composition and associated toxicological impact assessment of mobile phones, Journal of Environmental Chemical Engineering 9 (2021) 104603. Doi: 10.1016/j.jece.2020.104603 Search in Google Scholar

[2]. K.G. Maragkos, J.N. Hahladakis, E. Gidarakos, Qualitative and quantitative determination of heavy metals in waste cellular phones, Waste Management 33 (2013) 1882-1889. Doi: 10.1016/j.wasman.2013.05.016 Search in Google Scholar

[3]. F. Amiri, M. Moradinazar, J. Moludi, Y. Pasdar, F. Najafi, E. Shakiba, B. Hamzeh, A. Saber, The association between self-reported mobile phone usage with blood pressure and heart rate: evidence from a cross-sectional study, BMC Public Health 22 (2022) 2031. Doi: 10.1186/s12889-022014458-1 Search in Google Scholar

[4]. B. Sanou, The world in 2013: ICT facts and figures. Geneva, Switzerland, Retrieved from www.itu.int/ICTFactsFigures2013-e.pdf Search in Google Scholar

[5]. A. Zilberlicht, Z. Wiener-Megnazi, Y. Sheinfeld, B. Grach, S. Lahav-Baratz, M. Dirnfield, Habits of cellphone usage and sperm quality - does it warrant attention? Reproductive BioMedicine Online 31 (2015) 421-426. Doi: 10.1016/j.rbmo.2015.06.006 Search in Google Scholar

[6]. O. Osibanjo, I.C. Nnorom, The challenge of electronic waste (E-waste) management in developing countries, Waste Management and Research 25 (2007) 489–501. Doi: 10.1177/0734242X07082028 Search in Google Scholar

[7]. R. Muoka, Press release: Telecom sector contributes N2.508 trillion to Nigeria's GDP, Nigeria Communications Commission (2023), retrieved from ncc.gov.ng/accessible/media-centre/news-headlines/1346-press-release-telecom-sector-contributes-n2-508-trillion-to nigeria-s-gdp Search in Google Scholar

[8]. N. Singh, H. Duan, F. Yin, Q. Song, J. Li, Characterizing the materials composition and recovery potential from waste mobile phones: a comparative evaluation of cellular and smart phones, ACS Sustainable Chemical Engineering 6 (2018) 13016-13024. Doi: 10.1021/acssuschemeng.8b02516 Search in Google Scholar

[9]. International Precious Metals Institute, IPMI Guidance - Environmentally sound management for used mobile phones. International Precious Metals Institute, IPMI, USA, 2023. Retrieved from https://studylib.net/doc/7314722/ipmi-guidance--environmentally-sound Search in Google Scholar

[10]. Y. Jang, M. Kim, Management of used and end of life mobile phones in Korea: a review, Resource Conservation and Recycling 55 (2010) 11-19. Doi: 10.1016/j.resconrec.2010.07.003 Search in Google Scholar

[11]. C.E. Meskers, C. Hagelüken, Closed loop WEEE recycling? Challenges and opportunities for a global recycling society. In: S.M. Howard, (Ed.), EPD-TMS Congress 2009. Proceedings of Sessions and Symposia Sponsored by the Extraction and Processing Division (EPD) of the Minerals, Metals and Materials Society (TMS), San Fransisco, California, USA, pp. 1049–1054. Search in Google Scholar

[12]. S.R. Lim, J.M. Schoenung, Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities, Waste Management 30 (2010) 1653–1660. Doi: 10.1016/j.wasman.2010.04.005 Search in Google Scholar

[13]. P. Huang, X. Zhang, X. Deng, Survey and environmental awareness and performance in Ningbo, China: a case study on household electrical and electronic equipment, Journal of Cleaner Production 14 (2006) 1635–1643. Doi: 10.1016/j.jclepro.2006.02.006 Search in Google Scholar

[14]. G. Seliger, S.J. Skerlos, B. Basdere, M. Zettl, Design of a modular housing platform to accommodate the remanufacturing of multiple cellular telephone models, 2003 EcoDesign 3rd International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan (2003) pp. 243–50. Doi: 10.1109/ECODIM.2003.1322670 Search in Google Scholar

[15]. S. Yadav, S. Yadav, P. Kumar, Metal toxicity assessment of mobile phone parts using Milli Q water, Waste Management 34 (2014) 1274-1278. Doi: 10.1016/j.wasman.2014.02.024 Search in Google Scholar

[16]. European Commission, Directive 2002/95/EC on the European Parliament and of the Council on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. Official Journal of the European Union L37 (2003) 19–23. Search in Google Scholar

[17]. US EPA (United States Environmental Protection Agency), Method 3050B: Acid digestion of sediments, sludges, and soils, Revision 2, 1996, Washington, DC. Retrieved from https://www.epa.gov/sites/default/files/2015-06/documents/epa-3050b.pdf Search in Google Scholar

[18]. US CPSC (United States Consumer Product Safety Commission), Test Method: CPSC-CH-E1002-08.3. Standard operating procedure for determining total lead (Pb) in nonmetal children's products, revision, 2009. https://www.cpsc.gov/s3fs-public/pdfs/blk_media_CPSC-CH-E1002-08_3.pdf Search in Google Scholar

[19]. DTSC (California Department of Toxic Substances), Determination of regulated elements in discarded laptops, LCD monitors plasma TVs, and LCD TVs.” Sacramento: California Department of Toxic Substances Control, 2004. http://www.dtsc.ca.gov/hazardouswaste/ewaste/upload/hwmp_rep_sb20_lcd.pdf Search in Google Scholar

[20]. T.A. Majolagbe, Comparison of heavy metals found in waste mobile phones. M.Sc. Thesis, University of Ibadan, 2009. Search in Google Scholar

[21]. B. Rohrig, Chemmatters Article, “smartphones: smart chemistry”, American Chemical Society (2015), retrieved from https://www.acs.org/education/resources/highschool/chemmatters/past-issues/archives-2014-2015/smartphones.html, last visited in 21.07.2023. Search in Google Scholar

[22]. O. Tsydenova, M. Bengtsson, Chemical hazards associated with treatment of waste electrical and electronic equipment, Waste Management 31 (2011) 45-58. Doi: 10.1016/j.wasman.2010.08.014 Search in Google Scholar

[23]. E. Dimitrakakis, A. Janz, B. Bilitewski, E. Gidarakos, Small WEEE: determining recyclables and hazardous substances in plastics, Journal of Hazardous Materials 29 (2009) 2700-2706. Doi: 10.1016/j.jhazmat.2008.04.054 Search in Google Scholar

[24]. I.C. Nnorom, O. Osibanjo, Toxicity characterization of waste mobile phone plastics, Journal of Hazardous Materials 161 (2008) 183-188. Doi: 10.1016/j.jhazmat.2008.03.067 Search in Google Scholar

[25]. I.C. Nnorom, O. Osibanjo, K. Okechukwu, O. Nkwachukwu, and R.C. Chukwuma, Evaluation of heavy metal release from the disposal of waste computer monitors at an open dump, International Journal of Environmental Science and Development 1 (2010) 227–233. Doi: 10.7763/IJESD.2010.V1.44 Search in Google Scholar

[26]. P.O. Iniaghe, G.U. Adie, O. Osibanjo, Metal levels in computer monitor components discarded within the vicinities of electronic workshops, Toxicological and Environmental Chemistry 95 (2013) 1108-1115. Doi: 10.1080/02772248.2013.863890 Search in Google Scholar

[27]. K. Olubanjo, O. Osibanjo, I.C. Nnorom, Evaluation of Pb and Cu contents of selected component parts of waste personal computers, Journal of Applied Science and Environmental Management 19 (2015) 470-477. Doi: 10.4314/jasem.v19i3.17 Search in Google Scholar

[28]. J.D. Lincoln, O. A. Ogunseitan, A. A. Shapiro, and J. M. Saphres, Leaching assessment of hazardous material in cellular telephones, Environmental Science and Technology 41 (2007) 2572-2578. Doi: 10.1021/es0610479 Search in Google Scholar

[29]. M. Sahan, M.A. Kucuker, B. Demirel, A. Hursthouse, Determination of metal content of waste mobile phones and estimation of their recovery potential in Turkey, International Journal of Environmental Research and Public Health 16 (2019) 887. Doi: 10.3390/ijerph16050887 Search in Google Scholar

[30]. N. Wagner, What materials are used to make cell phones? Retrieved from https://www.techwalla.com/articles/what-materials-are-used-to-make-cell-phones, last visited in 30.04.2023. Search in Google Scholar

[31]. I.C. Nnorom, O. Osibanjo, Heavy metal characterization of waste portable rechargeable batteries used in mobile phones, International Journal of Environmental Science and Technology 6 (2009) 641-650. Doi: 10.1007/BF03326105 Search in Google Scholar

[32]. C.M. Costa, J.C. Barbosa, R. Goncalves, H. Castro, F.J. Del Campo, S. Lanceros-Mendez, Recycling and environmental issues of lithium-ion batteries: advances, challenges and opportunities, Energy Storage Materials 37 (2021) 433-465. Doi: 10.1016/j.ensm.2021.02.032 Search in Google Scholar

[33]. Q. Wang, J. Sun, G. Chu, Lithium ion battery fire and explosion., proceedings of the 8th International Symposium of the Fire Safety Science (2005) 375-382. Search in Google Scholar

[34]. R. Lankey, F. McMichael, Rechargeable battery management and recycling: a green design educational module, Green Design Initiative Technical Report, Carnegie Mellon University (1999) 1-14. Search in Google Scholar

[35]. C.J. Rydh, B. Svard, Impact of global metal flows arising from the use of portable rechargeable batteries, Science of the Total Environment 302 (2003) 167-184. Doi: 10.1016/s0048-9697(02)00293-0 Search in Google Scholar

[36]. P. Cusack, T. Perrett, The EU RoHS Directive and its implications for the plastics industry, Plastic Additives and Compounding 8 (2006) 46–49. Doi: 10.1016/S1464-391X(06)70584-0 Search in Google Scholar

[37]. L.Q. Ma, G.N. Rao, Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils, Journal of Environmental Quality 26 (1997) 259-264. Doi: 10.2134/jeq1997.00472425002 Search in Google Scholar

eISSN:
2286-038X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Chemistry, other