Acceso abierto

GC-MS profile and antimicrobial activities of extracts from root of Senna occidentalis Linn.


Cite

[1]. J. Valez-Gavilan, Senna occidentalis (Coffee Senna), Invasive species compendium, CABI Compendium. CABI Internatıonal (2016). Doi: 10.1079/cabicompendium.11450 Search in Google Scholar

[2]. R.B. Bhat, E.O. Etejere, V.T. Oladipo, Ethnobotanical studies from central Nigeria, Economic Botany 44 (1990) 382-390. Doi: 10.1007/bf03183923 Search in Google Scholar

[3]. J.P. Yadav, V. Arya, S. Yadav, M. Panghal, S. Kumar, S. Dhankhar, Cassia occidentalis L. A review on its ethnobotany, phytochemical, and pharmacological profile, Fitoterapia 81 (2010) 223-230. Doi: 10.1016/j.fitote.2009.09.008 Search in Google Scholar

[4]. M.M. Alshehri, C. Quispe, J. Harrera-Bravo, J. Sharifi-Rad, M. Butnariu, M. Kumar, D. Calina, W.C. Cho, A review of recent studies on the antioxidant and anti-infectious properties of Senna plants, Oxidative and Medicines and Cellular Longevity (2022). Doi: 10.1155/2022/6025900 Search in Google Scholar

[5]. R.S. Reeta, K. Patel, R.K. Sukumaran, C. Larroche, A. Pandey, Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production, Bioresource Technology 127 (2013) 500-550. Doi: 10.1016/j.biortech.2012.09.012 Search in Google Scholar

[6]. V.V. Sing, J. Jain, A.K. Mishra, Pharmacological and phytochemical profile of Cassia occidentalis L: A review, Journal of Drug Delivery and Therapeutics 6 (2016). Doi: 10.22270/jddt.v6i5.1284 Search in Google Scholar

[7]. H.L. Kim, B.J. Camp, R.D. Grigsby, Isolation of N-methyl morpholine from the seeds of Cassia occidentalis (Coffee senna), Journal of Agricultural and Food Chemistry 19 (1971) 198-199. Doi: 10.1021/jf60173a026 Search in Google Scholar

[8]. T. Hennebelle, B. Weniger, H. Joseph, S. Sahpaz, F. Bailleul, Senna alata, Fitoterapia 80 (2009) 385-393. Doi: 10.1016/j.fitote.2009.05.008 Search in Google Scholar

[9]. Z. Zhang, S.W. Ni, X. Xu, W.Z. Huang, S.S. Wang, H. Zhu, X.M. Gao, Chemical constituents from Cassia occidentalis, Zhongguo Zhong Yao Za Zhi 15 (2021) 3873-3876 (in Chinese). Doi: 10.19540/j.cnki.cjcmm.20210427.201 Search in Google Scholar

[10]. P. Jeruto, P.F. Arama, B. Anyango, T. Akenga, R. Nyunja, D. Khasabuli, in vitro antifungal activity of methanolic extracts of Senna didymobotrya (Fresen.). H.S. Irwin & Barneby Plant Parts, African Journal of Traditional, Complementary and Alternative Medicine 13 (2016) 168-174. Doi: 10.21010/ajtcam.v13i6.24 Search in Google Scholar

[11]. M.C. Mahanthesh, A.S. Manjappa, M. Shinde, J.I. Disouza, Biological activities of Cassia occidentalis Linn. A systematic review, World Journal of Pharmaceutical Research 8 (2019) 400-417. Doi: 10.20959/wjpr20199-15430 Search in Google Scholar

[12]. M.B. Delmut, L.M. Parente, J.R. Paula, E.C. Conceicao, A.S. Santos, I.A.H. Pfrimer, Cassia occidentalis: Effect on healing skin wounds induced by Bothrops moojeni in mice, Journal of Pharmaceutical Technology and Drug Research 2 (2013) 10. Doi: 10.7243/2050-120X-2-10 Search in Google Scholar

[13]. A.A. Tamasi, M.O. Shoge, T.T. Adegboyega, E.C. Chukwuma, Phytochemical analysis and in-vitro antimicrobial screening of the leaf extract of Senna occidentalis (Fabaceae), Asian Journal of Natural Product and Biochemistry 19 (2021) 58-65. Doi: 10.13057/biofar/f190203 Search in Google Scholar

[14]. S.K. Agarwal, S.S. Singh, S. Verma, S. Kumar, Antifungal activity of anthraquinone derivatives from Rheum emodi, Journal of Ethnopharmacology 72 (2000) 43-46. Doi: 10.1016/S0378-8741(00)00195-1 Search in Google Scholar

[15]. N.T. Manojlovic, S. Solujic, S. Sukdolak, Antimicrobial activity of an extract and anthraquinones from Caloplaca schaereri, Lichenologist 34 (2002) 83-85. Doi: 10.1006/lich.2001.0365 Search in Google Scholar

[16]. R.A. Abdullahi, H. Mainul, Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes, Journal of Pharmacy and Bio-allied Sciences 12 (2020) 1-10. Doi: 10.4103/jpbs.jpbs_175_19 Search in Google Scholar

[17]. A. Altemimi, N. Lakhssassi, A. Baharlouei, D. G. Watson, D.A. Lightfoot, Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts, Plants. (Basel) 6 (2017) 42. Doi: 10.3390/plants6040042 Search in Google Scholar

[18]. K.K. Aathira, B. Kariyil, D. Dhanusa, J.S. Haima, Qualitative and quantitative analysis (GC-MS) of methanol extract of Crataeva nurvala stem bark, Journal of Veterinary and Animal Sciences 52 (2021) 135-141. Doi: 10.51966/jvas.2021.52.2.135-141 Search in Google Scholar

[19]. M. Pakkirisamy, S.K. Kalakandan, K. Ravichandran, Phytochemical screening, GC-MS, FT-IR analysis of methanolic extract of Curcuma caesia Roxb (Black Tumeric), Pharmacognosy Journal 9 (2017) 952-956. Doi: 10.5530/pj.2017.6.149 Search in Google Scholar

[20]. J.R. Shaikh, M.K. Patil, Qualitative tests for preliminary phytochemical screening: An overview, International Journal of Chemical Studies 8 (2020) 8834. Doi: 10.22271/chemi.2020.V8.I2I.8834 Search in Google Scholar

[21]. C.S. Ezeonu, C.M. Ejikeme, Qualitative and quantitative determination of phytochemical contents of indigenous Nigerian softwoods, New Journal of Science 2016 (2016) 5601327. Doi: 10.1155/2016/5601327 Search in Google Scholar

[22]. A. Finnegan, R.C. Susserott Gouramanis, A simple sample preparation method to significantly improve Fourier Transform Infrared (FT-IR) spectra of micro plastics, Applied Spectroscopy 76 (2022) 783-792. Doi: 10.1177/00037028221075065 Search in Google Scholar

[23]. J. van der Weerd, R.M.A. Heeren, J.J. Boon, Preparation methods and accessories for Infrared spectroscopic analysis of multi-layer paint films, Studies in Conservation 49 (2004) 193-210. Doi: 10.2307/25487692 Search in Google Scholar

[24]. G.Y. Nyerges, J. Matyasi, J. Balla, Investigation and comparison of 5% dipheny l-95 % dimethylpolysiloxane capillary columns, Periodica Polytechnica Chemical Engineering 64 (2020) 430-436. Doi: 10.3311/ppch.15289 Search in Google Scholar

[25]. S.H. Hansen, Quantitative and qualitative chromatographic analysis, In Bioanalysis of pharmaceuticals: Sample preparation, separation techniques and mass spectrometry (2015). Doi: 10.1002/9781118716830 Search in Google Scholar

[26]. Y. Zuo, C. Wang, J. Zhan, Separation, characterization, and quantitation of benzoic and phenolic antioxidants in American cranberry fruit by GC-MS, Journal of Agricultural and Food Chemistry 50 (2020) 3789-3794. Doi: 10.1021/jf020055f Search in Google Scholar

[27]. T.V. Benjamin, A. Lamikanra, Investigation of Cassia alata, a plant used in Nigeria in the treatment of skin disease, Pharmaceutical Biology 19 (2008) 93-96. Doi: 10.3109/13880208109070583 Search in Google Scholar

[28]. K. Das, R.K. Tiwari, D.K. Shrivastava, Techniques for evaluation of medicinal plant products as antimicrobial agents: Current methods and future trends, Journal of Medicinal Plant Research 4 (2010) 104-111. Doi: 10.5897/jmpr09.030 Search in Google Scholar

[29]. H.I. Aletan, H.A. Kwazo, Qualitative and quantitative phytochemical analysis of Maerua crassifolia leaves using various solvents, Nigerian Journal of Pure & Applied Science 32 (2019) 3315-3323. Doi: 10.7910/dvn/6kblbh Search in Google Scholar

[30]. A.S. Saganuwan, M.L. Gulumbe, Evaluation of invitro antimicrobial activities of phytochemical constituents of Cassia occidentalis, Animal Research International 3 (2006) 556-569. Doi: 10.4314/ari.v3i3.40793 Search in Google Scholar

[31]. S.Y. Fatmawati, A.S. Purnomo, M.F. AbuBakar, Chemical constituents, usage and pharmacological activity of Cassia alata, Heliyon 6 (2020) e04396. Doi: 10.1016/j.heliyon.2020.e04396 Search in Google Scholar

[32]. A.M. Ibrahim, B. Lawal, N.A. Tsado, A. Awwal, Phytochemical screening, and GC-MS determination of bioactive constituents from methanol leaf extract of S. occidentalis, Journal of Coastal Life Medicine 3 (2015) 992-995. Doi: 10.12980/jclm.3.2015j5-135. Search in Google Scholar

[33]. T.O. Issa, A.I. Mohammed Ahmed, Y.S. Mohamed, S. Yagi, A.M. Makhawi, T.O. Khider Tarig, Physiochemical, insecticidal and antidiabetic activities of Senna occidentalis Linn root, Biochemistry Research International 2020 (2020) 8810744. Doi: 10.1155/2020/8810744 Search in Google Scholar

[34]. S. Shehu, I. Saleh, S.U. Otokpa, E.V. Madaki, Z.A. Sambi, Phytochemical and antiemetic studies on aqueous ethanol extract of root of Senna occidentalis (L.) Link, Bayero Journal of Pure and Applied Sciences 11 (2018) 94-98. Doi: 10.4314/bajopas.v11i2.11 Search in Google Scholar

[35]. R.A. Husein, A.A. El-Anssary, Plants secondary metabolites: The key drivers of pharmacological actions of medicinal plants, in: Herbal Medicine, IntechOpen (2018). Doi: 10.5772/intechopen.76139 Search in Google Scholar

[36]. A.P. Singh, S. Kumar, Applications of tannins in Industry, In: Tannins-structural properties, biological properties and current knowledge, Intechopen 2020. Doi: 10.5772/intechopen.85984 Search in Google Scholar

[37]. A. Ullah, S. Munir, S. LalBadshah, N. Khan, L. Ghani, B.G. Paulson, A.H. Emwas, J. Jaremko, Important flavonoids and their role as a therapeutic agent, Molecules 25 (2020) 5243. Doi: 10.3390/molecules25225243 Search in Google Scholar

[38]. A.K. Estrada, G.S. Laarveid, B. Bari, Isolation and evaluation of immunological adjuvant activities of saponins from Polygala Senegal L., Comparative Immunology: Microbial Infectious Diseases 23 (2000) 27-43. Doi: 10.1016/S0147-9571(99)00020-X Search in Google Scholar

[39]. H. Sun, X. Young, Y. Ye, Advances in saponin-based adjuvants, Vaccine 27 (2009) 1787-1796. Doi: 10.1016/J.VACCIN.2009. 01. 091 Search in Google Scholar

[40]. A.B.D. Nandiyanto, R. Oktiani, R. Ragadhita, How to read and interpret FTIR spectroscopy of organic material, Indonesian Journal of Science & Technology 4 (2019) 15806. Doi: 10.17509/IJOST.V4I1.15806 Search in Google Scholar

[41]. S. Sharaf, A. Higazy, A. Hebeish, Propolis induced antibacterial activity and other technical properties of cotton textiles, International Journal of Biological Macromolecules 59 (2013) 408-416. Doi: 10.1016/j.ijbiomac.2013.04.030 Search in Google Scholar

[42]. K. Kavipriya, M. Chandran, FTIR and GCMS analysis of bioactive, phytocompounds in methanolic leaf extract of Cassia alata, Biomedical and Pharmacology Journal 11 (2018) 18736. Doi: 10.13005/bpj/1355 Search in Google Scholar

[43]. P. Priyadharsini, D. Dhanasekaran, B. Kanimozhi, Isolation, structural identification, and herbicidal activity of N-phenylpropanamide from Streptomyces spp. KA1-3. Archive of Phytopathology and Plant Protection 46 (2013) 364-373. Doi: 10.1080/03235408.2012.758418 Search in Google Scholar

[44]. M. Kachel, A. Matwijczuk, A. Przywara, A. Kraszkiewicz, M. Koszel, Profile of fatty acids and spectroscopic characteristics of selected vegetable oils extracted by cold maceration, Agricultural Engineering 22 (2018) 61-71. Doi: 10.1515/agriceng-2018-0006 Search in Google Scholar

[45]. M. Matwijczuk, G. Zajac, R. Kowalski, M. Kachel-Jekubowska, M. Gagos, Spectroscopic studies of the quality of fatty acid methyl esters (FAME) derived from waste cooking oil, Polish Journal of Environmental Studies 26 (2017) 2643-2650. Doi: 10.15244/PJOES/70431 Search in Google Scholar

[46]. A.J. Silver, S. De Souza, Membranes from latex with propolis for biomedical applications, Materials Letters 116 (2014) 235-238. Doi: 10.1016/J.MATLET.2013.11.045 Search in Google Scholar

[47]. A. Javaid, H. Qudsia, I.H. Khan, A. Anwar, M.F. Ferdosi, Antifungal activity of Senna occidentalis root extract against Macrophomia phaseolina and its GC-MS analysis, Pakistan Journal of Weed Science Research 28 (2022) 115-122. Doi: 10.28941/PJWSR.V28I1.1033 Search in Google Scholar

[48]. A.V. Audipudi, R. Badri, C.V.S. Bhaskar, GC-MS and in silico molecular docking analysis of secondary metabolites present in leaf extract of Cassia occidentalis Linn., in: S.M. Malik, C. Long, K. Tamasiri, H. Lutken (Eds.) Medicinal Plants: Biodiversity, Sustainable Utilization and Conservation, pp. 501-508, Springer Nature Singapore Pte Ltd; 2020. Doi: 10.1007/978-981-15-1636-8_27 Search in Google Scholar

[49]. A.C. de Andrade Tomaz, G.E. C. de Mirande, M.F.V. de Souza, E.V.L. da Cunha, Analysis and characterization of methyl esters of fatty acids of some Gracilaria spp., Biochemical Systematics and Ecology 44 (2012) 303-306. Doi: 10.1016/j.bse.2012.02.006 Search in Google Scholar

[50]. M. Chukwuonye Ojinnaka, K.I. Nwachukwu, M.N. Ezediokpu, The chemical constituents and bioactivity of seed (fruit) extracts of Buchholzia coriacea Engler (Capparaceae), Journal of Applied Sciences and Environmental Management 19 (2015) 795-801. Doi: 10.4314/jasem.v19i4.29 Search in Google Scholar

[51]. G.A. Juliana Silva, A. Alexander Silva, D. Isabel Coutinho, P.O. Claudia, J.C. Alberto, G. V. Maria Silva, Chemical profile, and cytotoxic activity of leaf extracts from Senna spp. from Northeast of Brazil, Journal of the Brazilian Chemical Society 27 (2016) 1872-1880. Doi: 10.5935/0103-5053.20160073 Search in Google Scholar

[52]. M. Cholewski, M. Tomczykowa, M. Tomczy, A comprehensive review of chemistry, sources, and bioavailability of omega-3 fatty acids, Nutrients 10 (2018) 1662. Doi: 10.3390/NU10111662 Search in Google Scholar

[53]. E. Fattore, R. Farnelli, Palm oil and palmitic acid: A review on cardiovascular effects and carcinogenicity, International Journal of Food Science Nutrition 64 (2013) 648-659. Doi: 10.3109/09637486.2013.768213 Search in Google Scholar

[54]. G.O. Igile, U.L. Okoli, I.A. Iwara, M.U. Etang, Volatile constituents of two fractions of leaves of Ficus vogelli, Natural Product Chemistry & Research 6 (2018) 344. Doi: 10.4172/2329-6836.1000344 Search in Google Scholar

[55]. M.A. Andrade, R.R. Santos, A. Sanches-Silva, Essential oils from plants industrial application and biotechnological productions, In: S. Malik (Eds.), Exploring Plant Cells for The Production of Compounds of Interest pp. 145-170, Springer (2021). Doi: 10.1007/978-3-030-58271-5_6 Search in Google Scholar

[56]. B. Sharmeen Jugreet, S. Suroowan, R.R. Kannan Rengasamy, M.F. Mahomoodally, Chemistry, bioactivities, mode of action and industrial applications of essential oils, Trends in Food Science & Technology 101 (2020) 89-105. Doi: 10.1016/j.tifs.2020.04.025 Search in Google Scholar

[57]. S. Pattanaik, S. Chandra Si, A. Pal, J. Panda, S.S. Nayak, Wound healing activity of methanolic extract of the leaves of Crataeva magna and Euphorbia nerifolia in rats, Journal of Applied Pharmaceutical Science 4 (2014) 046-049. Doi: 10.7324/japs.2014.40310 Search in Google Scholar

[58]. J.C. Chukwujekwu, P.H. Coombes, D.A. Mulholland, J. Van Staden, Emodin, an antibacterial anthraquinone from the roots of Cassia occidentalis, South African Journal of Botany 72 (2006) 295-297. Doi: 10.1016/J.sajb.2005.08.003 Search in Google Scholar

[59]. N. Rajalingam, J. Jung, S. Seo, H. Jin, B. Kim, M. Jeong, D. Kim, J. Ryu, K. Ryu, K. Kyo Oh, Prevalence, distribution, enterotoxin profiles, antimicrobial resistance, and genetic diversity of Bacillus cereus group isolates from lettuce farms in Korea, Frontiers in Microbiology 13 (2022) 906040. Doi: 10.3389/fmicb.2022.906040 Search in Google Scholar

[60]. F.O. Taiwo, D.A. Akinkpelu, O.A. Aiyegoro, S. Olabiyi, M.F. Adegboye, The biocidal and phytochemical properties of the leaf extract of Cassia occidentalis Linn., African Journal of Microbiology Research 7 (2013) 3435-3441. Doi: 10.5897/AJMR 2013.5673 Search in Google Scholar

eISSN:
2286-038X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Chemistry, other