Acceso abierto

Effects of oxidative stress, DNA damage, and inflammation in multiple sclerosis: A clinical perspective


Cite

[1]. T.O. Tobore, Oxidative/nitroxidative stress and multiple sclerosis, Journal of Molecular Neuroscience 71 (2021) 506-514. DOİ: 10.1007/s12031-020-01672-y10.1007/s12031-020-01672-y32767188 Search in Google Scholar

[2]. I. Katz Sand, Classification, diagnosis, and differential diagnosis of multiple sclerosis, Current Opinion in Neurology 28 (2015) 193-205. DOI: 10.1097/WCO.000000000000020625887774 Open DOISearch in Google Scholar

[3]. R. Dobson, G. Giovannoni, Multiple sclerosis – a review, European Journal of Neurology 26 (2019) 27-40. DOI: 10.1111/ene.1381930300457 Open DOISearch in Google Scholar

[4]. N. Garg, T.W. Smith, An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis, Brain and Behavior 5 (2015) e00362. DOI: 10.1002/brb3.362458980926445701 Open DOISearch in Google Scholar

[5]. H.N. Lemus, A.E. Warrington, M. Rodriguez, Multiple sclerosis, Neurologic Clinics 36 (2018) 1–11. DOI: 10.1016/j.ncl.2017.08.002712563929157392 Open DOISearch in Google Scholar

[6]. M. Tavassolifar, M. Vodjgani, Z. Salehi, M. Izad, The influence of reactive oxygen species in the immune system and pathogenesis of multiple sclerosis, Autoimmune Diseases 25 (2020) 1-14. DOI: 10.1155/2020/5793817733477232789026 Open DOISearch in Google Scholar

[7]. K. Ohl, K. Tenbrock, M. Kipp, Oxidative stress in multiple sclerosis: Central and peripheral mode of action, Experimental Neurology 277 (2016) 58-67. DOI: 10.1016/j.expneurol.2015.11.010709452026626971 Open DOISearch in Google Scholar

[8]. E. D’Amico, P. Factor-Litvak, R.M. Santella, H. Mitsumoto, Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis, Free Radical Biology and Medicine 65 (2013) 509–27. DOI: 10.1016/j.freeradbiomed.2013.06.029385983423797033 Open DOISearch in Google Scholar

[9]. M. Gharagozloo, K. Gris, T. Mahvelati, A. Amrani, J.R. Lukens, D. Gris, NLR-dependent regulation of inflammation in multiple sclerosis, Frontiers in Immunology 8 (2018) 2012. DOI: 10.3389/fimmu.2017.02012577812429403486 Open DOISearch in Google Scholar

[10]. N.P. Singh, M.T. McCoy, R.R. Tice, E.L. Schneider, A simple technique for quantitation of low levels of DNA damage in individual cells, Experimental Cell Research 175 (1988) 184-191. DOI: 10.1016/0014-4827(88)90265-03345800 Open DOISearch in Google Scholar

[11]. H. Lassmann, J. van Horssen, Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1862 (2016) 506-510. DOI: 10.1016/j.bbadis.2015.09.01826432481 Open DOISearch in Google Scholar

[12]. L. Haider, Inflammation, iron, energy failure, and oxidative stress in the pathogenesis of multiple sclerosis, Oxidative Medicine and Cellular Longevity (2015) 1-10. DOI: 10.1155/2015/725370446176026106458 Open DOISearch in Google Scholar

[13]. S.Y. Zhang, L.N. Gui, Y.Y. Liu, S. Shi, Y. Cheng, Oxidative stress marker aberrations in multiple sclerosis: A meta-analysis study, Frontiers in Neuroscience 26 (2020) 14. DOI: 10.3389/fnins.2020.00823747922732982663 Open DOISearch in Google Scholar

[14]. D.A. Dyment, G.C. Ebers, A. Dessa Sadovnick. Genetics of multiple sclerosis, The Lancet Neurology 3 (2004) 104–10. DOI: 10.1016/S1474-4422(03)00663-X Open DOISearch in Google Scholar

[15]. G. Vural, Ş. Gümüşyayla, O. Deniz, S. Neşelioğlu, Ö. Erel, Relationship between thiol-disulphide homeostasis and visual evoked potentials in patients with multiple sclerosis, Neurological Sciences 40 (2019) 385-391. DOI: 10.4236/wjns.2016.63026 Open DOISearch in Google Scholar

[16]. J. Witherick, A. Wilkins, N. Scolding, K. Kemp, Mechanisms of oxidative damage in multiple sclerosis and a cell therapy approach to treatment, Autoimmune Diseases (2011) 1-11. DOI: 10.4061/2011/164608301061521197107 Open DOISearch in Google Scholar

[17]. S. Oncel, M. Ozturk, R. Gozubatik-Celik, A. Soysal, S. Baybaş, Investigation of oxidative stress in relapse and remission periods of patients with relapsing-Remitting multiple sclerosis, Neurological Sciences and Neurophysiology 38 (2021) 67. DOI: 10.4103/nsn.nsn_142_20 Open DOISearch in Google Scholar

[18]. M. Vasic, A. Topic, B. Markovic, N. Milinkovic, E. Dincic, Oxidative stress-related risk of the multiple sclerosis development, Journal of Medical Biochemistry 10 (2022) 41. DOI: 10.5937/jomb0-37546 Open DOISearch in Google Scholar

[19]. G. Vural, S. Gumusyayla, H. Bektas, O. Deniz, M. Ergin, O. Erel, Dynamic thiol-disulphide homeostasis in patients with multiple sclerosis, World Journal of Neuroscience 06 (2016) 214-219. DOI: 10.1007/s10072-018-3660-330506120 Open DOISearch in Google Scholar

[20]. O.A. Sedelnikova, C.E. Redon, J.S. Dickey, A.J. Nakamura, A.G. Georgakilas, W.M. Bonner, Role of oxidatively induced DNA lesions in human pathogenesis, Mutation Research/Reviews in Mutation Research 704 (2010) 152-159. DOI: 10.1016/j.mrrev.2009.12.005307495420060490 Open DOISearch in Google Scholar

[21]. J. van Horssen, M.E. Witte, G. Schreibelt, H.E. de Vries, Radical changes in multiple sclerosis pathogenesis, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1812 (2011) 141-150. DOI: 10.1016/j.bbadis.2010.06.01120600869 Open DOISearch in Google Scholar

[22]. Y. Lai, C. Dong, Therapeutic antibodies that target inflammatory cytokines in autoimmune diseases, International Immunology 28 (2016) 181–188. DOI: 10.1093/intimm/dxv063488987826545932 Open DOISearch in Google Scholar

[23]. S. Haase, R.A. Linker, Inflammation in multiple sclerosis, Therapeutic Advances in Neurological Disorders 14 (2021) 1-16. DOI: 10.1177/17562864211007687805383233948118 Open DOISearch in Google Scholar

[24]. M. Duddy, M. Niino, F. Adatia, S. Hebert, M. Freedman, H. Atkins, H.J. Kim, A. Bar-Or, Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis, The Journal of Immunology 178 (2007) 6092-6099. DOI: 10.4049/jimmunol.178.10.609217475834 Open DOISearch in Google Scholar

[25]. M. Yosefifard, G. Vaezi, A.A. Malekirad, F. Faraji, V. Hojati, A Randomized control trial study to determine the effect of melatonin on serum levels of IL-1β and TNF-α in patients with multiple sclerosis. Iranian Journal of Allergy, Asthma and Immunology 7 (2020) 649-654. DOI: 10.18502/ijaai.v18i6.217732245308 Open DOISearch in Google Scholar

[26]. A. Hartmann, Recommendations for conducting the in vivo alkaline Comet assay, Mutagenesis 18 (2003) 45–51. DOI: 10.1093/mutage/18.1.4512473734 Open DOISearch in Google Scholar

[27]. M. Derrico, E. Parlanti, E. Dogliotti, Mechanism of oxidative DNA damage repair and relevance to human pathology, Mutation Research/Reviews in Mutation Research 659 (2008) 4–14. DOI: 10.1016/j.mrrev.2007.10.00318083609 Open DOISearch in Google Scholar

[28]. M.D. Evans, M. Dizdaroglu, M.S. Cooke, Oxidative DNA damage and disease: induction, repair and significance, Mutation Research/Reviews in Mutation Research 567 (2004) 1–61. DOI: 10.1016/j.mrrev.2003.11.00115341901 Open DOISearch in Google Scholar

[29]. V.L. Souliotis, N.I. Vlachogiannis, M. Pappa, A. Argyriou, P.A. Ntouros, P.P. Sfikakis, DNA damage response and oxidative stress in systemic autoimmunity, International Journal of Molecular Sciences 21 (2019) 55. DOI: 10.3390/ijms21010055698223031861764 Open DOISearch in Google Scholar

[30]. K.M. Menezes, T.D. Algarve, F.S. Flôres, I.B.M Cruz, F. Copetti, A.F. Silveira, DNA damage and postural balance in multiple sclerosis patients, Fisioterapia em Movimento 30 (2017) 85–91. DOI: 10.1590/1980-5918.030.s01.ao08 Open DOISearch in Google Scholar

eISSN:
2286-038X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Chemistry, other