Acceso abierto

A review of the toxicity of triazole fungicides approved to be used in European Union to the soil and aqueous environment


Cite

[1]. A. Sharma, A. Shukla, K. Attri, M. Kumar, P. Kumar, A. Suttee, G. Singh, R.P. Branwal, N. Singla, Global trends in pesticides: A looming threat and viable alternatives, Ecotoxicology and Environmental Safety 201 (2020) 10812. Doi: 10.1016/j.ecoenv.2020.11081232512419 Open DOISearch in Google Scholar

[2]. https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20200603-1 (accessed on 04.03.2022) Search in Google Scholar

[3]. Agri-Environmental Indicator—Consumption of Pesticides. Available online: https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Agrienvironmental_indicator_-_consumption_of_pesticides (accessed on 6 December 2021) Search in Google Scholar

[4]. P. Sharma, A. Sharma, D.N. Jasuja, N. Sharma, C.S. Joshi, A Review on Toxicological Effects of Fungicides. Research, Journal of Pharmaceutical, Biological and Chemical Sciences 6 (2015) 348-360. Search in Google Scholar

[5]. I.M. Gridan, A.A. Ciorsac, A. Isvoran, Prediction of ADME-Tox properties and toxicological endpoints of triazole fungicides used for cereals protection, ADMET&DMPK 7 (2019) 161-173. Doi: 10.5599/admet.668895723535350663 Open DOISearch in Google Scholar

[6]. J.P. Zubrod, M. Bundschuh, G. Arts, C. A. Brühl, G. Imfeld, A. Knäbel, S. Payraudeau, J.J. Rasmussen, J. Rohr, A. Scharmüller, K. Smalling, S.Stehle, R. Schulz, R.B. Schäfer, Fungicides: An Overlooked Pesticide Class?, Environmental Science & Technology 53 (2019) 3347-3365. Doi: 10.1021/acs.est.8b04392653613630835448 Open DOISearch in Google Scholar

[7]. M.N. Filimon, S.O.Voia, D.L. Vlădoiu, A. Isvoran, V. Ostafe, Temperature dependent effect of difenoconazole on enzymatic activity from the soil, Journal of the Serbian Chemical Society 80 (2015) 1127–1137. Doi: 10.2298/JSC141218030F Open DOISearch in Google Scholar

[8]. D.L. Roman, D.I. Voiculescu, M. Filip, V. Ostafe, A. Isvoran, Effects of Triazole Fungicides on Soil Microbiota and on the Activities of Enzymes Found in Soil: A Review, Agriculture 11 (2021) 893. Doi: 10.3390/agriculture11090893 Open DOISearch in Google Scholar

[9]. H. Uwizeyimana, M. Wang, W. Chen, K. Khan, The eco-toxic effects of pesticide and heavy metal mixtures towards earthworms in soil, Environmental Toxicology and Pharmacology 55 (2017) 20-29. Doi: 10.1016/j.etap.2017.08.00128806580 Open DOISearch in Google Scholar

[10]. S. Sabzevari, J. Hofman, A worldwide review of currently used pesticides’ monitoring in agricultural soils, Science of The Total Environment 812 (2022) 152344. Doi: 10.1016/j.scitotenv.2021.15234434919921 Open DOISearch in Google Scholar

[11]. M. Syafrudin, R.A. Kristanti, A. Yuniarto, T. Hadibarata, J.Rhee, W.A. Alonazi, T.S. Algarni, A.H. Almarri, A.M. Al-Mohaimeed, Pesticides in drinking water - A Review, International Journal of Environmental Research and Public Health 18 (2021) 468. Doi: 10.3390/ijerph18020468782686833430077 Open DOISearch in Google Scholar

[12]. C. Bernasconi, P.M. Demetrio, L.L. Alonso, T.M. Mac Loughlin, E. Cerdá, S.J. Sarandón, D.J. Marino, Evidence for soil pesticide contamination of an agroecological farm from a neighboring chemical-based production system, Agriculture, Ecosystems & Environment 313 (2021) 107341. Doi: 10.1016/j.agee.2021.107341 Open DOISearch in Google Scholar

[13]. V. Silva, H.G.J. Mol, P. Zomer, M. Tienstra, C.J. Ritsema, V. Geissen, Pesticide residues in European agricultural soils – A hidden reality unfolded, Science of the Total Environment 653 (2019) 1532–1545. Doi: 10.1016/j.scitotenv.2018.10.44130759587 Open DOISearch in Google Scholar

[14]. T. Huang, H. Jiang, Y. Zhao, J. He, H. Cheng, C.J. Martyniuk, A comprehensive review of 1,2,4-triazole fungicide toxicity in zebrafish (Danio rerio): A mitochondrial and metabolic perspective, Science of The Total Environment 809 (2021) 151177. Doi: 10.1016/j.scitotenv.2021.15117734699814 Open DOISearch in Google Scholar

[15]. EUR-Lex. Available online: https://eurlex.europa.eu/eli/reg/2006/1907/2014-04-10 (accessed on 7 October 2021) Search in Google Scholar

[16]. D. Moher, L. Shamseer, M. Clarke, D. Ghersi, A. Liberati, M. Petticrew, P. Shekelle, L.A. Stewart, Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement, Systematic Reviews 4 (2015) 1–9. Doi: 10.1186/2046-4053-4-1432044025554246 Open DOISearch in Google Scholar

[17]. L. Shamseer, D. Moher, M. Clarke, D. Ghersi, A. Liberati, M. Petticrew, P. Shekelle, L.A. Stewart, Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation, BMJ 349 (2015) g7647. Doi: 10.1136/bmj.g764725555855 Open DOISearch in Google Scholar

[18]. K.A. Lewis, J. Tzilivakis, D. Warner, A. Green, An international database for pesticide risk assessments and management, Human and Ecological Risk Assessment: An International Journal 22 (2016) 1050-1064. Doi: 10.1080/10807039.2015.1133242 Open DOISearch in Google Scholar

[19]. Guidance on Information Requirements and Chemical Safety Assessment (https://echa.europa.eu/guidance-documents/guidance-on-information-requirements-and-chemical-safety-assessment - accessed on 7 February 2022) Search in Google Scholar

[20]. H.M.G. Van der Werf, Assessing the impact of pesticides on the environment, Agriculture, Ecosystems & Environment 60 (1996) 81-96. Doi: 10.1016/S0167-8809(96)01096-1 Open DOISearch in Google Scholar

[21]. EFSA Scientific Report, Conclusion on the peer review of metconazole 64 (2006) 1-71 Search in Google Scholar

[22]. R. Maurya, K. Dubey, D. Singh, A.K. Jain, A.K. Pandey, Effect of difenoconazole fungicide on physiological responses and ultrastructural modifications in model organism Tetrahymena pyriformis, Ecotoxicology and Environmental Safety 182 (2019) 109375. Doi: 10.1016/j.ecoenv.2019.10937531299474 Open DOISearch in Google Scholar

[23]. Y. Li, F. Dong, X. Liu, J. Xu, X. Chen, Y. Han, X. Liang, Y. Zheng, Studies of enantiomeric degradation of the triazole fungicide hexaconazole in tomato, cucumber, and field soil by chiral liquid chromatography–tandem mass spectrometry, Chirality 25 (2013) 60–169. Doi: 10.1002/chir.2212123335346 Open DOISearch in Google Scholar

[24]. W. Zhang, T. Li, J. Tang, X. Liu, Y. Liu, X. Zhong, The profiles of chiral pesticides in peri-urban areas near Yangtze River: enantioselective distribution characteristics and correlations with surface sediments, Journal of Environmental Sciences 121 (2022) 199-210. Doi: 10.1016/j.jes.2022.02.00135654510 Open DOISearch in Google Scholar

[25]. F. Dong, J. Li, B. Chankvetadze, Y. Cheng, J. Xu, X. Liu, Y. Li, X. Chen, C. Bertucci, D. Tedesco, R. Zanasi, Y. Zheng, Chiral triazole fungicide difenoconazole: absolute stereochemistry, stereoselective bioactivity, aquatic toxicity, and environmental behavior in vegetables and soil, Environmental Science & Technology 47 (2013) 3386-3394. Doi: 10.1021/es304982m23451708 Open DOISearch in Google Scholar

[26]. H. Liang, J, Qiu, L. Li, W. Li, Z. Zhou, F. Liu, L. Qiu, Stereoselective dissipation of epoxiconazole in grape (Vitis vinifera cv. Kyoho) and soil under field conditions, Chemosphere 87 (2012) 982-987. Doi: 10.1016/j.chemosphere.2012.02.03822414382 Open DOISearch in Google Scholar

[27]. M. Jia, Y. Wang, D. Wang, M. Teng, J. Yan, S. Yan, Z. Meng, R. Li, Z. Zhou, W. Zhu, The effects of hexaconazole and epoxiconazole enantiomers on metabolic profile following exposure to zebrafish (Danio rerio) as well as the histopathological changes, Chemosphere 226 (2019) 520-533. Doi: 10.1016/j.chemosphere.2019.03.14030953897 Open DOISearch in Google Scholar

[28]. C. Li, S. Fan, Y. Zhang, X. Zhang, J. Luo, C. Liu, Toxicity, bioactivity of triazole fungicide metconazole and its effect on mycotoxin production by Fusarium verticillioides: New perspective from an enantiomeric level, Science of The Total Environment 828 (2022) 154432. Doi: 10.1016/j.scitotenv.2022.15443235278556 Open DOISearch in Google Scholar

[29]. Y. Li, F. Dong, X, Liu, J. Xu, Y. Han, Y. Zheng, Enantioselectivity in tebuconazole and myclobutanil non-target toxicity and degradation in soils, Chemosphere 122 (2015) 145-153. Doi: 10.1016/j.chemosphere.2014.11.03125475972 Open DOISearch in Google Scholar

[30]. N. Cui, H. Xu, S, Yao, Y. He, H. Zhang, Y. Yu, Chiral triazole fungicide tebuconazole: enantioselective bioaccumulation, bioactivity, acute toxicity, and dissipation in soils, Environmental Science and Pollution Research, 25 (2018) 25468-25475. Doi: 10.1007/s11356-018-2587-929951765 Open DOISearch in Google Scholar

[31]. D. Yu, J. Li, Y. Zhang, H. Wang, B. Guo, L. Zheng, Enantioselective bioaccumulation of tebuconazole in earthworm Eisenia fetida, Journal of Environmental Sciences 24 (2012) 2198–2204. Doi: 10.1016/s1001-0742(11)61053-x23534218 Open DOISearch in Google Scholar

[32]. Q. Zhang, L. Zhou, Y. Yang, X. Hua, H. Shi, M. Wang, Study on the stereoselective degradation of three triazole fungicides in sediment, Ecotoxicology and Environmental Safety 117 (2015) 1-6. Doi: 10.1016/j.ecoenv.2015.03.01425814463 Open DOISearch in Google Scholar

[33]. N. Liu, F. Dong, J. Xu, X. Liu, Y. Zheng, Chiral bioaccumulation behavior of tebuconazole in the zebrafish (Danio rerio), Ecotoxicology and Environmental Safety 126 (2016) 78–84. Doi: 10.1016/j.ecoenv.2015.12.00726722978 Open DOISearch in Google Scholar

[34]. Z. Tong, X. Dong, S. Yang, M. Sun, T. Gao, J. Duan, H.Cao, Enantioselective effects of the chiral fungicide tetraconazole in wheat: Fungicidal activity and degradation behavior, Environmental Pollution 247 (2019) 1-8. Doi: 10.1016/j.envpol.2019.01.01330648617 Open DOISearch in Google Scholar

[35]. J. Li, F. Dong, J. Xu, X. Liu, Y. Li, W. Shan, Y. Zheng, Enantioselective determination of triazole fungice tetraconazole by chiral high-performance liquid chromatography and its application to pharmacokinetic study in cucumber, muskmelon, and soils, Chirality 24 (2012) 294-302. Doi: 10.1002/chir.2199722278951 Open DOISearch in Google Scholar

[36]. J.H. Chen, H.L. Wang, B.Y. Guo, J.Z. Li, LCMS/MS method for simultaneous determination of myclobutanil, hexaconazole, diniconazole, epoxiconazole and tetraconazole enantiomers in soil and earthworms, International Journal of Environmental Analytical Chemistry 94 (2014) 791–800. Doi: 10.1080/03067319.2013.853763 Open DOISearch in Google Scholar

[37]. Y. Li, F. Dong, X. Liu, J. Xu, Y. Han, Y. Zheng, Chiral fungicide triadimefon and triadimenol: Stereoselective transformation in greenhouse crops and soil, and toxicity to Daphnia magna, Journal of Hazardous Materials 265 (2014) 115–123.10.1016/j.jhazmat.2013.11.055 Search in Google Scholar

[38]. X. Wang, Y. Liu, M. Xue, Z. Wang, J. Yu, X. Guo, Enantioselective degradation of chiral fungicides triticonazole and prothioconazole in soils and their enantioselective accumulation in earthworms Eisenia fetida, Ecotoxicology and Environmental Safety 183 (2019) 109491. Doi: 10.1016/j.ecoenv.2019.10949131377517 Open DOISearch in Google Scholar

[39]. R. Liu, Y. Deng, W. Zhang, L. Zhang, Z. Wang, B. Li, J. Diao, Z. Zhou, Enantioselective mechanism of toxic effects of triticonazole against Chlorella pyrenoidosa, Ecotoxicology and Environmental Safety 185 (2019) 109691. Doi: 10.1016/j.ecoenv.2019.10969131563746 Open DOISearch in Google Scholar

[40]. L. Bielská, S.E. Hale, L. Škulcová, A review on the stereospecific fate and effects of chiral conazole fungicides, Science of The Total Environment 750 (2021) 141600. Doi: 10.1016/j.scitotenv.2020.14160033182213 Open DOISearch in Google Scholar

eISSN:
2286-038X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Chemistry, other