Cite

[1]. M. Azeem, F. Batool, N. Iqbal, Ikram-ul-Haq – Chapter 1-Algal-Based Biopolymers, Chemistry, Biotechnology and Materials Science (2017) 1-31. https://doi.org/10.1016/B978-0-12-812360-7.00001-X10.1016/B978-0-12-812360-7.00001-X Search in Google Scholar

[2]. P. Maria, O. Cadar, S. Cadar, M. Chintoanu, N. Cioica, M. Fenesan, A. Balea, V. Pascalau, Biopolimeri naturali - sursa de materie prima în realizarea ambalajelor biodegradabile, în vederea protejarii mediului (Natural biopolymers- raw for the manufacture of biodegradabale packing in the sight of environmental protection) ProEnvironment 4 (2011) 139 – 146 (in Romanian). Search in Google Scholar

[3]. D. Özçimen, B. İnan, O. Morkoç, A. Efe, A review on algal biopolymers, Journal of Chemical Engineering Research Updates 4 (2017) 7-14. https://DOI:10.15377/2409-983X.2017.04.210.15377/2409-983X.2017.04.2 Search in Google Scholar

[4]. M.A. Jmel, N. Anders, G.B. Messaoud, M.N. Marzouki, A. Spiess, I. Smaali, The stranded macroalga Ulva lactuca as a new alternative source of cellulose: Extraction, physicochemical and rheological characterization, Journal of Cleaner Production 234 (2019) 1421-1427. https://doi.org/10.1016/j.jclepro.2019.06.22510.1016/j.jclepro.2019.06.225 Search in Google Scholar

[5]. H. Dominguez, E.P. Loret, Ulva lactuca, A source of troubles and potential riches, Marine Drugs 17 (2019) 357. https://doi.org/10.3390/md1706035710.3390/md17060357662731131207947 Search in Google Scholar

[6]. A. Dumbrava, D. Berger, C. Matei, M.D. Radu, E. Gheorghe, Characterization and applications of a new composite material obtained by green synthesis, through deposition of zinc oxide onto calcium carbonate precipitated in green seaweeds extract, Ceramics International 44 (2018) 4931–4936. https://doi.org/10.1016/j.ceramint.2017.12.08410.1016/j.ceramint.2017.12.084 Search in Google Scholar

[7]. P. Bajpai, Chapter 10 - Emerging sources of biopolymers, Properties and Applications in Packaging (2019) 197-202. https://doi.org/10.1016/B978-0-12-818404-2.00010-210.1016/B978-0-12-818404-2.00010-2 Search in Google Scholar

[8]. F. Leliaert, Green algae: Chlorophyta and Streptophyta, Encyclopedia of Microbiology (Fourth Edition) (2019) 457-468. https://doi.org/10.1016/B978-0-12-809633-8.20890-X10.1016/B978-0-12-809633-8.20890-X Search in Google Scholar

[9]. M.Y. Roleda, S. Lage, D.F. Aluwini, C. Rebours, M.B. Brurberg, U. Nitschke, F.G. Gentili, Chemical profiling of the Arctic sea lettuce Ulva lactuca (Chlorophyta) mass-cultivated on land under controlled conditions for food applications, Food Chemistry 341 (2021) 127999. https://doi.org/10.1016/j.foodchem.2020.12799910.1016/j.foodchem.2020.12799933099268 Search in Google Scholar

[10]. H. Yaich, H. Garna, S. Besbes, M. Paquot, C. Blecker, H. Attia, Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia, Food Chemistry 128, 4 (2011), 895-901. https://doi.org/10.1016/j.foodchem.2011.03.11410.1016/j.foodchem.2011.03.114 Search in Google Scholar

[11]. *** Institute Grigore Antipa, Research report No. 3, Project MACROEVAL, 2010, http://www.rmri.ro/WebPages/MACROEVAL/32-144%20Etapa3.pdf Search in Google Scholar

[12]. J.T. Kidgell, M. Magnusson, R. de Nys, Ch.R.K. Glasson, Ulvan: A systematic review of extraction, composition and function, Algal Research 39 (2019) 101422. https://doi.org/10.1016/j.algal.2019.10142210.1016/j.algal.2019.101422 Search in Google Scholar

[13]. M. Lahaye, E. Alvarez-Cabal Cimadevilla, R. Kuhlenkamp, B. Quemener, V. Lognone, P. Dion, Chemical composition and 13C NMR spectroscopic characterisation of ulvans from Ulva (Ulvales, Chlorophyta), Journal of Applied Phycology 11 (1999) 1–7.10.1023/A:1008063600071 Search in Google Scholar

[14]. S. Samiee, H. Ahmadzadeh, S. Lyon, Chapter 17 - Algae as a Source of Microcrystalline Cellulose, Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts, Woodhead Publishing Series in Energy (2019) 331-350. https://doi.org/10.1016/B978-0-12-817941-3.00017-610.1016/B978-0-12-817941-3.00017-6 Search in Google Scholar

[15]. J. Workman, Chapter 1: Introduction to Infrared Spectroscopy, in The Concise Handbook of Analytical Spectroscopy: Theory, Applications and Reference Materials, World Scientific (2016) 1-44 Search in Google Scholar

[16]. J. Kim, K. Choi, D.S. Chung, 3.35 - Sample Preparation for Capillary Electrophoretic Applications, Analytical Techniques for Scientists 3 (2012) 701-721. https://doi.org/10.1016/B978-0-12-381373-2.00110-110.1016/B978-0-12-381373-2.00110-1 Search in Google Scholar

[17]. A. Zygler, M. Słomińska, J. Namieśnik, 2.04 - Soxhlet Extraction and New Developments Such as Soxtec, Analytical Techniques for Scientists 2 (2012) 65-82. https://doi.org/10.1016/B978-0-12-381373-2.00037-510.1016/B978-0-12-381373-2.00037-5 Search in Google Scholar

[18]. A.K. Siddhanta, K. Prasad, R. Meena, G. Prasad, G.K. Mehta, M.U. Chhatbar, M.D. Oza, S. Kumar, N.D. Sanandiya, Profiling of cellulose content in Indian seaweed species, Bioresource Technology 100 (2009) 6669-6673. https://doi.org/10.1016/j.biortech.2009.07.04710.1016/j.biortech.2009.07.04719683437 Search in Google Scholar

[19]. N. Wahlstor, U. Edlund, H. Pavia, G. Toth, A. Jaworski, A.J. Pell, F.X. Choong, H. Shirani, K. Peter, R. Nilsson, A. Richter-Dahlfors, Cellulose from green macroalgae Ulva lactuca: isolation, characteristics, optotracing, and production of cellulose nanofibrils, Cellulose 27 (2020) 3707-3725. https://doi.org/10.1007/s10570-020-03029-510.1007/s10570-020-03029-5 Search in Google Scholar

[20]. M.A. Jmel, G.B. Messaoud, M.N. Marzouki, M. Mathlouthi, I. Smaali, Physico-chemical characterization and enzymatic functionalization of Enteromorpha sp. cellulose, Carbohydrate Polymers 135 (2016) 274-279. https://doi.org/10.1016/j.carbpol.2015.08.04810.1016/j.carbpol.2015.08.04826453878 Search in Google Scholar

eISSN:
2286-038X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Chemistry, other