Acceso abierto

Optimization of SPE method for the extraction of 12 neurotransmitters from sheep brain


Cite

[1]. T. Fujiwara, T. Funatsu, M. Tsuunoda, Improved extraction method for catecholamines using monolithic silica disk-packed spin column, Chromatography, 2020 in press, DOI: 10.15583/jpchrom.2020.012.10.15583/jpchrom.2020.012 Search in Google Scholar

[2]. W.F. Young, D.A. Calhoun, J.W.M. Lenders, M. Stowasser, S.C. Textor, Screening for endocrine hypertension: An endocrine society scientific statement, Endocr. Rev. 38 (2017) 103–122. Search in Google Scholar

[3]. S.A. Lagerstedt, D.J. O'Kane, R.J. Singh, Measurements of plasma free metanephrine and normetanephrine by liquid chromatography-tandem mass spectrometry for diagnosis of pheochromocytoma, Clin. Chem. 50 (2004) 603-611.10.1373/clinchem.2003.024703 Search in Google Scholar

[4]. C.A. Kelm-Nelson, M.A Trevino, M.R. Ciucci, Quantitative analysis of catecholamines in the Pink1 -/- rat model of early-onset Parkinson disease, Neurosci. 379 (2018) 126-141.10.1016/j.neuroscience.2018.02.027 Search in Google Scholar

[5]. R.I. Chirita-Tampu, C. West, L. Fougere, C. Elfakir, Advantages of HILIC mobile phases for LC-ESI-MS-MS analysis of neurotransmitters, LC-GC Europe 26 (2013) 128-140. Search in Google Scholar

[6]. T.J. Kauppila, T. Nikkola, R.A. Ketola, R. Kostiainen, Atmospheric pressure photoionizationmass spectrometry and atmospheric pressure chemical ionization-mass spectrometry of neurotransmitters, J. Mass Spectrom. 41 (2006) 781-789.10.1002/jms.1034 Search in Google Scholar

[7]. M.A. Raggi, C. Sabbioni, G. Nicoletta, R. Mandrioli, G. Gerra, Analysis of plasma catecholamines by liquid chromatography with amperometric detection using a novel SPE ion exchange procedure, J. Sep. Sci. 26 (2003) 1141-1146.10.1002/jssc.200301486 Search in Google Scholar

[8]. R.I. Chirita, A. Finaru, C. Elfakir, Evaluation of fused-core and monolithic versus porous silica-based C18 columns and porous graphitic carbon for ion-pairing liquid chromatography analysis of catecholamines and related compounds, J. Chromatogr. B 879 (2011) 633-640.10.1016/j.jchromb.2011.01.036 Search in Google Scholar

[9]. D. Talwar, C. Williamson, A. McLaughlin, A. Gill, D.S.J. O’Reilly, Extraction and separation of urinary catecholamines as their diphenyl boronate complexes using C18 solid-phase extraction sorbent and high-performance liquid chromatography, J. Chromatogr. B 769 (2002) 341-349.10.1016/S1570-0232(02)00022-3 Search in Google Scholar

[10]. S. Rinne, A. Holm, E. Lundanes, T. Greibrokk, Limitations of porous graphitic carbon asstationary phase material in the determination of catecholamines, J. Chromatogr. A 1119 (2006) 285-293.10.1016/j.chroma.2006.03.00316545392 Search in Google Scholar

[11]. R.I. Chiriță, O.I. Patriciu., C. Elfakir, Catecholamines and related compounds separation on a mixed mode column, Scientific Study & Research - Chemistry & Chemical Engineering, Biotechnology, Food Industry 15 (2014) 123-133. Search in Google Scholar

[12]. X. Zhang, A. Rauch, H. Lee, H. Xiao, G. Rainer, N.K. Logothetis, Capillary hydrophilic interaction chromatography/mass spectrometry for simultaneous determination of multiple neurotransmitters in primate cerebral cortex, Rapid Commun. Mass Spectrom. 21 (2007) 3621-3628.10.1002/rcm.325117939159 Search in Google Scholar

[13]. R.I. Chiriță, C. West, A.L. Fînaru, C. Elfakir, Approach to hydrophilic interaction chromatography column selection: Application to neurotransmitters analysis, J. Chromatogr. A 1217 (2010) 3091-3104. Search in Google Scholar

[14]. R.I. Chiriță, C. West, A.L. Fînaru, C. Elfakir, Determination of catecholamines and related molecules in brain extract using a hydrophilic interaction liquid chromatography mass spectrometry method, Scientific Study & Research - Chemistry & Chemical Engineering, Biotechnology, Food Industry 21 (2020) 59-69. Search in Google Scholar

[15]. Q. Gu, X. Shi, P. Yin, P. Gao, X. Lu, G. Xu, Analysis of catecholamines and their metabolites in adrenal gland by liquid chromatography tandem mass spectrometry, Anal. Chim. Acta 15 (2008) 192-200.10.1016/j.aca.2008.01.01718261514 Search in Google Scholar

[16]. A.A. Dawoud, T. Kawaguchi, Y. Markushin, M.D. Porter, R. Jankowiak, Separation of catecholamines and dopamine-derived DNA adduct using a microfluidic device with electrochemical detection, Sens. Actuators B Chem. 120 (2006) 42-50.10.1016/j.snb.2006.01.041 Search in Google Scholar

[17]. F. Blandini, E. Martignoni, C. Pacchetti, S. Desideri, D. Rivellini, G. Nappi, Simultaneous determination of L-dopa and 3-O-methyldopa in human platelets and plasma using highperformance liquid chromatography with electrochemical detection, J. Chromatogr. B 700 (1997) 278-282.10.1016/S0378-4347(97)00307-1 Search in Google Scholar

[18]. H. He, C.M. Stein, B. Christman, A.J. Wood, Determination of catecholamines in sheep plasma by high-performance liquid chromatography with electrochemical detection: comparison of deoxyepinephrine and 3,4-dihydroxybenzylamine as internal standard, J. Chromatogr. B 701 (1997) 115-119. Search in Google Scholar

[19]. B.A. Patel, M. Arundell, K.H. Parker, M.S. Yeoman, D. O’Hare, Simple and rapid determination of serotonin and catecholamines in biological tissue using high-performance liquid chromatography with electrochemical detection, J. Chromatogr. B 818 (2005) 269-276.10.1016/j.jchromb.2005.01.008 Search in Google Scholar

[20]. M.A. Raggi, C. Sabbioni, G. Casamenti, G. Gerra, N. Calonghi, L. Masotti, Determination of catecholamines in human plasma by high-performance liquid chromatography with electrochemical detection, J. Chromatogr. B 730 (1999) 201-211.10.1016/S0378-4347(99)00213-3 Search in Google Scholar

[21]. P. Koivisto, A. Tornkvist, E. Heldin, K.E. Markides, Separation of L-DOPA and Four Metabilites in Plasma Using a Porous Graphitic Carbon Column in Capillary Liquide Chromatography, Chromatographia 55 (2002) 39-42.10.1007/BF02492312 Search in Google Scholar

[22]. A.T. Wood, M.R. Hall, Reversed-phase high-performance liquid chromatography of catecholamines and indoleamines using a simple gradient solvent system and native fluorescence detection, J. Chromatogr. B 744 (2000) 221-225.10.1016/S0378-4347(00)00249-8 Search in Google Scholar

[23]. T. Kanamori, M. Isokawa, T. Funatsu, M. Tsunoda, Development of analytical method for catechol compounds in mouse urine using hydrophilic interaction liquid chromatography with fluorescence detection, J. Chromatogr. B 985 (2015) 142-148.10.1016/j.jchromb.2015.01.03825682335 Search in Google Scholar

[24]. A. Thomas, H. Geyer, H.J. Mester, W. Schanzer, E. Zimmermann, M. Thevis, Quantitative determination of adrenaline and noradrenaline in urine using liquid chromatography-tandem mass spectrometry, Chromatographia 64 (2006) 587-591.10.1365/s10337-006-0067-8 Search in Google Scholar

[25]. W.H.A. de Jong, K.S. Graham, J.C. van der Molen, T.P. Links, M.P. Morris, H.A. Ross, E.G.E. de Vries, I.P. Kema, Plasma free metanephrine measurement using automated online solid phase extraction-HPLC-tandem mass spectrometry, Clin. Chem. 53 (2007) 1684-1693.10.1373/clinchem.2007.08711417712005 Search in Google Scholar

[26]. S. Bourcier, J.F. Benoist, F. Clerc, O. Rigal, M. Taghi, Y. Hoppilliard, Detection of 28 neurotransmitters and related compounds in biological fluids by liquid chromatography/tandem mass spectrometry, Rapid Commun. Mass Spectrom. 20 (2006) 1405-1421.10.1002/rcm.245916572467 Search in Google Scholar

[27]. H.I. Woo, J.S. Yang, H.J. Oh, Y.Y. Cho, J.H. Kim, H.D. Park, S.Y. Lee, A simple and rapid analytical method based on solid-phase extraction and liquid chromatography–tandem mass spectrometry for the simultaneous determination of free catecholamines and metanephrines in urine and its application to routine clinical analysis, Clin. Biochem. 49 (2016) 573-579.10.1016/j.clinbiochem.2016.01.010 Search in Google Scholar

[28]. J. A. Starkey, Y. Mechref, J. Muzikar, W. J. McBride, M. V. Novotny, Determination of salsolinol and related catecholamines through online preconcentration and liquid chromatography/atmospheric pressure photoionization mass spectrometry, Anal. Chem. 78 (2006) 3342-3347.10.1021/ac051863j Search in Google Scholar

[29]. J. Barbosa, D. Barrón, M.P. Hermo, A. Navalón, O. Ballesteros, Determination and characterization of quinolones in foodstuffs of animal origin by CEUV, LC-UV, LC-FL, LC-MS AND LC-MS/MS, Ovidius University Annals of Chemistry, 20 (2009) 165-197. Search in Google Scholar

[30]. C. Balbae, A.I. Dumitru (Birladeanu), M. Popescu, C.I. Koncsag, Aspects concerning the heavy metal analysis in samples with difficult matrix, Ovidius University Annals of Chemistry, 20 (2009) 209-212. Search in Google Scholar

[31]. B.J. Petteys, K.S. Graham, M.L. Parnás, C. Holt, E.L. Frank: Performance characteristics of an LC– MS/MS method for the determination of plasma metanephrines, Clin. Chim. Acta 413 (2012) 1459-1465. Search in Google Scholar

[32]. B. Claude, R. Nehmé, P. Morin, Analysis of urinary neurotransmitters by capillary electrophoresis: Sensitivity enhancement using field-amplified sample injection and molecular imprinted polymer solid phase extraction, Anal. Chim. Acta 699 (2011) 242-248. Search in Google Scholar

[33]. E. Hollenbach, C. Shulz, H. Lehnert, Rapid and sensitive determination of catecholamines and the metabolite 3-methoxy-4-hydroxyphenethyleneglycol using HPLC following novel extraction procedures, Life Sci. 63 (1998) 737-750.10.1016/S0024-3205(98)00329-4 Search in Google Scholar

[34]. M. Lee, S.Y. Oh, T.S. Pathak, I.R. Paeng, B.Y. Choa, K.J. Paeng, Selective solid-phase extraction of catecholamines by the chemically modified polymeric adsorbents with crown ether, J. Chromatogr. A 1160 (2007) 340-344.10.1016/j.chroma.2007.06.033 Search in Google Scholar

[35]. S. Sacmaci, S. Kartal, M. Sacmaci, C. Soykan, Novel solid phase extraction procedure for some trace elements in various samples prior to their determinations by FAAS, Bull. Korean Chem. Soc 32 (2011) 444-450.10.5012/bkcs.2011.32.2.444 Search in Google Scholar

[36]. E. Nalewajko, A. Wiszowata, A. Kojło, Determination of catecholamines by flow-injection analysis and high-performance liquid chromatography with chemiluminescence detection, J. Pharm. Biomed. Anal. 43 (2007) 1673-1681.10.1016/j.jpba.2006.12.021 Search in Google Scholar

[37]. P. Kumarathasan, R. Vincent, New approach to the simultaneous analysis of catecholamines and tyrosines in biological fluids, J. Chromatogr. A 987 (2003) 349-358.10.1016/S0021-9673(02)01598-4 Search in Google Scholar

[38]. M. Dunand, D. Gubian, M. Stauffer, K. Abid, E. Grouzmann, High-throughput and sensitive quantitation of plasma catecholamines by ultraperformance liquid chromatography–tandem mass spectrometry using a solid phase microwell extraction plate, Anal. Chem. 85 (2013) 3539-3544.10.1021/ac400458423432705 Search in Google Scholar

[39]. M.A. Saracino, R. Mandrioli, L. Mercolini, A. Ferranti, A. Zaimovic, C. Leonardi, M.A. Raggi, Determination of homovanillic acid (HVA) in human plasma by HPLC with coulometric detection and a new SPE procedure, J. Pharm. Biomed. Anal. 42 (2006) 107-112.10.1016/j.jpba.2005.11.03016406455 Search in Google Scholar

[40]. E. Rozet, R. Morello, F. Lecomte, G.B. Martin, P. Chiap, J. Crommen, K.S. Boos, Ph. Hubert, Performances of a multidimensional on-line SPELC-ECD method for the determination of three major catecholamines in native human urine: Validation, risk and uncertainty assessments, J. Chromatogr. B 884 (2006) 251-260. Search in Google Scholar

[41]. X. Zhou, A. Zhu, G. Shi, Selective extraction and analysis of catecholamines in rat blood microdialysate by polymeric ionic liquid-diphenylboric acid-packed capillary column and fast separation in high-performance liquid chromatography-electrochemical detector, J. Chromatogr. A 1409 (2015) 125-131.10.1016/j.chroma.2015.07.04026206631 Search in Google Scholar

[42]. H. Sirén, M. Mielonen, M. Herlevi, Capillary electrophoresis in the determination of anionic catecholamine metabolites from patients’ urine, J. Chromatogr. A 1032 (2004) 289-297.10.1016/j.chroma.2003.12.034 Search in Google Scholar

[43]. M. Machida, A. Sakaguchi, S. Kamada, T. Fujimoto, S. Takechi, S. Kakinoki, A. Nomura, Simultaneous analysis of human plasma catecholamines by high-performance liquid chromatography with a reversed-phase triacontylsilyl silica column, J. Chromatogr. B 1032 (2004) 289-297.10.1016/j.chroma.2003.12.034 Search in Google Scholar

[44]. D. Thiébaut, J. Vial, M. Michel, M.-C. Hennion, T. Greibrokk, Evaluation of reversed phase columns designed for polar compounds and porous graphitic carbon in “trapping” and separating neurotransmitters, J. Chromatogr. A 1122 (2006) 97-10410.1016/j.chroma.2006.04.074 Search in Google Scholar

[45]. https://www.waters.com/waters/en_BE/Waters-Oasis-Sample-Extraction-SPE-Products/nav.htm?cid=513209&locale=en_BE accessed 18.08.2020 Search in Google Scholar

[46]. M.A. Raggi, V. Pucci, C. Sabbioni, S. Furlanetto, G. Gerra, Simultaneous determination of plasma catecholamine metabolites (homovanillic acid, 3,4-dihydroxy phenyl acetic acid, 3-methoxy-4-hydroxy-phenylglycol) using liquid chromatography with amperometric detection, J. Sep. Sci. 24 (2001) 275-281.10.1002/1615-9314(20010401)24:4<275::AID-JSSC275>3.0.CO;2-5 Search in Google Scholar

[47]. M.C. Hennion, Graphitized carbons for solid-phase extraction, J. Chromatogr. A 885 (2000) 73-95.10.1016/S0021-9673(00)00085-6 Search in Google Scholar

eISSN:
2286-038X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Chemistry, other