Acceso abierto

Content of Polyphenolic Compounds and Biological Activity of Berries, Leaves and Flowers of Crataegus L.


Cite

Abubakar, A., & Haque, M. (2020). Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy And Bioallied Sciences, 12(1), 1. https://doi.org/10.4103/jpbs.JPBS_175_19Search in Google Scholar

Alirezalu, A., Ahmadi, N., Salehi, P., Sonboli, A., Alirezalu, K., Mousavi Khaneghah, A., Barba, F. J., Munekata, P. E. S., & Lorenzo, J. M. (2020). Physicochemical Characterization, Antioxidant Activity, and Phenolic Compounds of Hawthorn (Crataegus spp.) Fruits Species for Potential Use in Food Applications. Foods, 9(4), 436. https://doi.org/10.3390/foods9040436Search in Google Scholar

Alirezalu, A., Salehi, P., Ahmadi, N., Sonboli, A., Aceto, S., Hatami Maleki, H., & Ayyari, M. (2018). Flavonoids profile and antioxidant activity in flowers and leaves of hawthorn species (Crataegus spp.) from different regions of Iran. International Journal of Food Properties, 21(1), 452–470. https://doi.org/10.1080/10942912.2018.1446146Search in Google Scholar

Apak, R., Güçlü, K., Özyürek, M., Esin Karademir, S., & Erçağ, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International Journal of Food Sciences and Nutrition, 57(5–6), 292–304. https://doi.org/10.1080/09637480600798132Search in Google Scholar

Bahri-Sahl, R., Ammar, S., Fredj, R. B., Saguem, S., Grec, S., Trotin, F., & Skhiri, F. H. (2009). Polyphenol Contents and Antioxidant Activities of Extracts from Flowers of Two Crataegus azarolus L. Varieties. Pakistan Journal of Biological Sciences, 12(9), 660–668. https://doi.org/10.3923/pjbs.2009.660.668Search in Google Scholar

Bardakci, H., Celep, E., Gözet, T., Kan, Y., & Kırmızıbekmez, H. (2019). Phytochemical characterization and antioxidant activities of the fruit extracts of several Crataegus taxa. South African Journal of Botany, 124, 5–13. https://doi.org/10.1016/j.sajb.2019.04.012Search in Google Scholar

Bekbolatova, E., Kukula-Koch, W., Baj, T., Stasiak, N., Ibadullayeva, G., Koch, W., Głowniak, K., Tulemissov, S., Sakipova, Z., & Boylan, F. (2018). Phenolic composition and antioxidant potential of different organs of Kazakh Crataegus almaatensis Pojark: A comparison with the European Crataegus oxyacantha L. flowers. Open Chemistry, 16(1), 415–426. https://doi.org/10.1515/chem-2018-0048Search in Google Scholar

Belkhir, M., Rebai, O., Dhaouadi, K., Congiu, F., Tuberoso, C. I. G., Amri, M., & Fattouch, S. (2013). Comparative Analysis of Tunisian Wild Crataegus azarolus (Yellow Azarole) and Crataegus monogyna (Red Azarole) Leaf, Fruit, and Traditionally Derived Syrup: Phenolic Profiles and Antioxidant and Antimicrobial Activities of the Aqueous-Acetone Extracts. Journal of Agricultural and Food Chemistry, 61(40), 9594–9601. https://doi.org/10.1021/jf402874zSearch in Google Scholar

Bignami, C., Paolocci, M., Scossa, A., & Bertazza, G. (2003). Preliminary evaluation of nutritional and medicinal components of Crataegus azarolus fruits. Acta Horticulturae, 597, 95–100. https://doi.org/10.17660/ActaHortic.2003.597.11Search in Google Scholar

Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2020). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10(3). https://doi.org/10.38212/2224-6614.2748Search in Google Scholar

Chelliah, R., & Oh, D.-H. (2022). Screening for Antioxidant Activity: Metal Chelating Assay. In D. Dharumadurai (Ed.), Methods in Actinobacteriology (pp. 457–458). Springer US. https://doi.org/10.1007/978-1-0716-1728-1_63Search in Google Scholar

Çoklar, H., & Akbulut, M. (2016). The change in antioxidant activity, total phenolic content and phenolic profile of Hawthorn (Crataegus orientalis) fruit with maturity. Fruit Research Instıtute Fruit. Science, 3(2), 30–37.Search in Google Scholar

Dalle-Donne, I., Rossi, R., Colombo, R., Giustarini, D., & Milzani, A. (2006). Biomarkers of Oxidative Damage in Human Disease. Clinical Chemistry, 52(4), 601–623. https://doi.org/10.1373/clinchem.2005.061408Search in Google Scholar

Dekić, V., Ristić, N., Dekić, B., & Ristić, M. (2020). Phenolic and flavonoid content and antioxidant evaluation of hawthorn (Crataegus monogyna Jacq.) fruits and leaves extracts. The University Thought - Publication in Natural Sciences, 10(1), 20–25. https://doi.org/10.5937/univtho10-25574Search in Google Scholar

Denev, P., Kratchanova, M., Petrova, I., Klisurova, D., Georgiev, Y., Ognyanov, M., & Yanakieva, I. (2018). Black Chokeberry (Aronia melanocarpa (Michx.) Elliot) Fruits and Functional Drinks Differ Significantly in Their Chemical Composition and Antioxidant Activity. Journal of Chemistry, 2018, 1–11. https://doi.org/10.1155/2018/9574587Search in Google Scholar

Ebrahimzadeh, M. (2009). Antioxidant activity of Crataegus pentaegyna subsp. Elburensis fruits extracts used in traditional medicine in Iran. Paksitan Journal of Molecular Science, 12(5), 413–419.Search in Google Scholar

Edwards, J. E., Brown, P. N., Talent, N., Dickinson, T. A., & Shipley, P. R. (2012). A review of the chemistry of the genus Crataegus. Phytochemistry, 79, 5–26. https://doi.org/10.1016/j.phytochem.2012.04.006Search in Google Scholar

Forman, H. J., Davies, K. J. A., & Ursini, F. (2014). How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radical Biology and Medicine, 66, 24–35. https://doi.org/10.1016/j.freeradbiomed.2013.05.045Search in Google Scholar

Forman, H. J., & Zhang, H. (2021). Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery, 20(9), 689–709. https://doi.org/10.1038/s41573-021-00233-1Search in Google Scholar

Froehlicher, T., Hennebelle, T., Martin-Nizard, F., Cleenewerck, P., Hilbert, J.-L., Trotin, F., & Grec, S. (2009). Phenolic profiles and antioxidative effects of hawthorn cell suspensions, fresh fruits, and medicinal dried parts. Food Chemistry, 115(3), 897–903. https://doi.org/10.1016/j.foodchem.2009.01.004Search in Google Scholar

Furey, A., Tassell, M., Kingston, R., Gilroy, D., & Lehane, M. (2010). Hawthorn (Crataegus spp.) in the treatment of cardiovascular disease. Pharmacognosy Reviews, 4(7), 32. https://doi.org/10.4103/0973-7847.65324Search in Google Scholar

Gao, X., Ohlander, M., Jeppsson, N., Björk, L., & Trajkovski, V. (2000). Changes in Antioxidant Effects and Their Relationship to Phytonutrients in Fruits of Sea Buckthorn (Hippophae rhamnoides L.) during Maturation. Journal of Agricultural and Food Chemistry, 48(5), 1485–1490. https://doi.org/10.1021/jf991072gSearch in Google Scholar

Gao, Z., Jia, Y.-N., Cui, T.-Y., Han, Z., Qin, A.-X., Kang, X.-H., Pan, Y.-L., & Cui, T. (2013). Quantification of Ten Polyphenols in the Leaves of Chinese Hawthorn (Crataegus pinnatifida) by HPLC. Asian Journal of Chemistry, 25(18), 10344–10348. https://doi.org/10.14233/ajchem.2013.15455Search in Google Scholar

González-Jiménez, F. E., Salazar-Montoya, J. A., Calva-Calva, G., & Ramos-Ramírez, E. G. (2018). Phytochemical Characterization, In Vitro Antioxidant Activity, and Quantitative Analysis by Micellar Electrokinetic Chromatography of Hawthorn (Crataegus pubescens) Fruit. Journal of Food Quality, 2018, 1–11. https://doi.org/10.1155/2018/2154893Search in Google Scholar

Goto, T., Obara, M., Aoki, S., Okazawa, K., Konisho, K., Osakabe, N., & Shoji, T. (2021). Evaluation of Polyphenolic Content and Potential Antioxidant Activity of Japanese Cultivars of Peaches, Prunes, and Plums Based on Reversed- and Normal-Phase HPLC and Principal Component Analyses. ACS Food Science & Technology, 1(10), 2019–2029. https://doi.org/10.1021/acsfoodscitech.1c00357Search in Google Scholar

Gu, L., House, S. E., Wu, X., Ou, B., & Prior, R. L. (2006). Procyanidin and Catechin Contents and Antioxidant Capacity of Cocoa and Chocolate Products. Journal of Agricultural and Food Chemistry, 54(11), 4057–4061. https://doi.org/10.1021/jf060360rSearch in Google Scholar

Gu, L., Kelm, M. A., Hammerstone, J. F., Beecher, G., Holden, J., Haytowitz, D., & Prior, R. L. (2003). Screening of Foods Containing Proanthocyanidins and Their Structural Characterization Using LCMS/MS and Thiolytic Degradation. Journal of Agricultural and Food Chemistry, 51(25), 7513–7521. https://doi.org/10.1021/jf034815dSearch in Google Scholar

Jaiswal, R., & Kuhnert, N. (2011). Identification and characterization of five new classes of chlorogenic acids in burdock (Arctium lappa L.) roots by liquid chromatography/tandem mass spectrometry. Food & Function, 2(1), 63–71. https://doi.org/10.1039/C0FO00125BSearch in Google Scholar

Kallassy, H., Fayyad-Kazan, M., Makki, R., EL-Makhour, Y., Hamade, E., Rammal, H., Leger, D. Y., Sol, V., Fayyad-Kazan, H., Liagre, B., & Badran, B. (2017). Chemical Composition, Antioxidant, Anti-Inflammatory, and Antiproliferative Activities of the Plant Lebanese Crataegus Azarolus L. Medical Science Monitor Basic Research, 23, 270–284. https://doi.org/10.12659/MSMBR.905066Search in Google Scholar

Kirakosyan, A., Seymour, E., Kaufman, P. B., Warber, S., Bolling, S., & Chang, S. C. (2003). Antioxidant Capacity of Polyphenolic Extracts from Leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) Subjected to Drought and Cold Stress. Journal of Agricultural and Food Chemistry, 51(14), 3973–3976. https://doi.org/10.1021/jf030096rSearch in Google Scholar

Król, D. (2011). Głóg (Crataegus monogyna (L.), Crataegus oxyacantha (L.)) – cenną rośliną leczniczą. Postępy Fitoterapii, 2, 122–126.Search in Google Scholar

Li, T., Fu, S., Huang, X., Zhang, X., Cui, Y., Zhang, Z., Ma, Y., Zhang, X., Yu, Q., Yang, S., & Li, S. (2022). Biological properties and potential application of hawthorn and its major functional components: A review. Journal of Functional Foods, 90, 104988. https://doi.org/10.1016/j.jff.2022.104988Search in Google Scholar

Lin, Y.-T., Lin, H.-R., Yang, C.-S., Liaw, C.-C., Sung, P.-J., Kuo, Y.-H., Cheng, M.-J., & Chen, J.-J. (2022). Antioxidant and Anti-α-Glucosidase Activities of Various Solvent Extracts and Major Bioactive Components from the Fruits of Crataegus pinnatifida. Antioxidants, 11(2), 320. https://doi.org/10.3390/antiox11020320Search in Google Scholar

Liu, P., Kallio, H., Lü, D., Zhou, C., & Yang, B. (2011). Quantitative analysis of phenolic compounds in Chinese hawthorn (Crataegus spp.) fruits by high performance liquid chromatography–electrospray ionisation mass spectrometry. Food Chemistry, 127(3), 1370–1377. https://doi.org/10.1016/j.foodchem.2011.01.103Search in Google Scholar

Liu, P., Kallio, H., & Yang, B. (2011). Phenolic Compounds in Hawthorn (Crataegus grayana) Fruits and Leaves and Changes during Fruit Ripening. Journal of Agricultural and Food Chemistry, 59(20), 11141–11149. https://doi.org/10.1021/jf202465uSearch in Google Scholar

Liu, S., Chang, X., Liu, X., & Shen, Z. (2016). Effects of pretreatments on anthocyanin composition, phenolics contents and antioxidant capacities during fermentation of hawthorn (Crataegus pinnatifida) drink. Food Chemistry, 212, 87–95. https://doi.org/10.1016/j.foodchem.2016.05.146Search in Google Scholar

Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118. https://doi.org/10.4103/0973-7847.70902Search in Google Scholar

Luo, M., Yang, X., Hu, J.-Y., Jiao, J., Mu, F.-S., Song, Z.-Y., Gai, Q.-Y., Qiao, Q., Ruan, X., & Fu, Y.-J. (2016). Antioxidant Properties of Phenolic Compounds in Renewable Parts of Crataegus pinnatifida inferred from Seasonal Variations: Seasonal C. pinnatifida inferred from Seasonal Variations. Journal of Food Science, 81(5), C1102–C1109. https://doi.org/10.1111/1750-3841.13291Search in Google Scholar

Monrad, J. K., Howard, L. R., King, J. W., Srinivas, K., & Mauromoustakos, A. (2010). Subcritical Solvent Extraction of Procyanidins from Dried Red Grape Pomace. Journal of Agricultural and Food Chemistry, 58(7), 4014–4021. https://doi.org/10.1021/jf9028283Search in Google Scholar

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4Search in Google Scholar

Mraihi, F., Hidalgo, M., de Pascual-Teresa, S., Trabelsi-Ayadi, M., & Chérif, J.-K. (2015). Wild grown red and yellow hawthorn fruits from Tunisia as source of antioxidants. Arabian Journal of Chemistry, 8(4), 570–578. https://doi.org/10.1016/j.arabjc.2014.11.045Search in Google Scholar

Nabavi, S., Habtemariam, S., Ahmed, T., Sureda, A., Daglia, M., Sobarzo-Sánchez, E., & Nabavi, S. (2015). Polyphenolic Composition of Crataegus monogyna Jacq.: From Chemistry to Medical Applications. Nutrients, 7(9), 7708–7728. https://doi.org/10.3390/nu7095361Search in Google Scholar

Nekkaa, A., Benaissa, A., Mutelet, F., & Canabady-Rochelle, L. (2021). Rhamnus alaternus Plant: Extraction of Bioactive Fractions and Evaluation of Their Pharmacological and Phytochemical Properties. Antioxidants, 10(2), 300. https://doi.org/10.3390/antiox10020300Search in Google Scholar

Orhan, I., Özçelik, B., Kartal, M., Özdeveci, B., & Duman, H. (2007). HPLC Quantification of Vitexine-2″-O-rhamnoside and Hyperoside in Three Crataegus Species and Their Antimicrobial and Antiviral Activities. Chromatographia, 66(S1), 153–157. https://doi.org/10.1365/s10337-007-0283-xSearch in Google Scholar

Oszmiański, J., & Wojdylo, A. (2005). Aronia melanocarpa phenolics and their antioxidant activity. European Food Research and Technology, 221(6), 809–813. https://doi.org/10.1007/s00217-005-0002-5Search in Google Scholar

Özyürek, M., Bener, M., Güçlü, K., Dönmez, A., & Pırıldar, S. (2012). Evaluation of Antioxidant Activity of Crataegus Species Collected from Different Regions of Turkey. Records of Natural Products, 6(3), 263–277.Search in Google Scholar

Pandey, K. B., & Rizvi, S. I. (2009). Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278. https://doi.org/10.4161/oxim.2.5.9498Search in Google Scholar

Patel, S. (2017). Rose hip as an underutilized functional food: Evidence-based review. Trends in Food Science & Technology, 63, 29–38. https://doi.org/10.1016/j.tifs.2017.03.001Search in Google Scholar

Plazonić, A., Bucar, F., Maleš, Ž., Mornar, A., Nigović, B., & Kujundžić, N. (2009). Identification and Quantification of Flavonoids and Phenolic Acids in Burr Parsley (Caucalis platycarpos L.), Using High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization Mass Spectrometry. Molecules, 14(7), 2466–2490. https://doi.org/10.3390/molecules14072466Search in Google Scholar

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3Search in Google Scholar

Rigelsky, J. M., & Sweet, B. V. (2002). Hawthorn: Pharmacology and therapeutic uses. American Journal of Health-System Pharmacy, 59(5), 417–422. https://doi.org/10.1093/ajhp/59.5.417Search in Google Scholar

Robak, J., & Gryglewski, R. J. (1988). Flavonoids are scavengers of superoxide anions. Biochemical Pharmacology, 37(5), 837–841. https://doi.org/10.1016/0006-2952(88)90169-4Search in Google Scholar

Sagaradze, V. A., Babaeva, E. Yu., Kalenikova, E. I., Trusov, N. A., & Peshchanskaya, E. V. (2021). Quantitative Anatomical Characteristics of the Leaf Blades of the Several Species of Crataegus L. Drug Development & Registration, 10(4), 138–146. https://doi.org/10.33380/2305-2066-2021-10-4-138-146Search in Google Scholar

Simirgiotis, M. (2013). Antioxidant Capacity and HPLC-DAD-MS Profiling of Chilean Peumo (Cryptocarya alba) Fruits and Comparison with German Peumo (Crataegus monogyna) from Southern Chile. Molecules, 18(2), 2061–2080. https://doi.org/10.3390/molecules18022061Search in Google Scholar

Song, J., Li, X., Zeng, L., Liu, H., & Xie, M. (2011). Determination of cyanidin-3-glucoside (red kernel food colour) in beverages by high performance liquid chromatography and a study of its degradation by quadruple time-of-flight mass spectrometry. Food Additives & Contaminants: Part A, 1–12. https://doi.org/10.1080/19440049.2011.610035Search in Google Scholar

Trexler, S. E., Nguyen, E., Gromek, S. M., Balunas, M. J., & Baker, W. L. (2018). Electrocardiographic effects of hawthorn (Crataegus oxyacantha) in healthy volunteers: A randomized controlled trial: Electrocardiographic effects of hawthorn. Phytotherapy Research, 32(8), 1642–1646. https://doi.org/10.1002/ptr.6094Search in Google Scholar

Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001Search in Google Scholar

Venskutonis, P. R. (2018). Phytochemical composition and bioactivities of hawthorn (Crataegus spp.): Review of recent research advances. Journal of Food Bioactives, 4. https://doi.org/10.31665/JFB.2018.4163Search in Google Scholar

Wen, L., Guo, X., Liu, R. H., You, L., Abbasi, A. M., & Fu, X. (2015). Phenolic contents and cellular antioxidant activity of Chinese hawthorn “Crataegus pinnatifida”. Food Chemistry, 186, 54–62. https://doi.org/10.1016/j.foodchem.2015.03.017Search in Google Scholar

Wyspiańska, D., Kucharska, A. Z., Sokół-Łętowska, A., & Kolniak-Ostek, J. (2017). Physico-chemical, antioxidant, and anti-inflammatory properties and stability of hawthorn (Crataegus monogyna Jacq.) procyanidins microcapsules with inulin and maltodextrin: Properties of hawthorn procyanidins microcapsules. Journal of the Science of Food and Agriculture, 97(2), 669–678. https://doi.org/10.1002/jsfa.7787Search in Google Scholar

Yang, B., & Liu, P. (2012). Composition and health effects of phenolic compounds in hawthorn (Crataegus spp.) of different origins. Journal of the Science of Food and Agriculture, 92(8), 1578–1590. https://doi.org/10.1002/jsfa.5671Search in Google Scholar

Żurek, N., Kapusta, I., & Cebulak, T. (2020). Impact of extraction conditions on antioxidant potential of extracts of flowers, leaves and fruits of Hawthorn (Crataegus × macrocarpa l.). 27(2), 130–141.Search in Google Scholar

Żurek, N., Karatsai, O., Rędowicz, M. J., & Kapusta, I. T. (2021). Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules, 26(9), 2656. https://doi.org/10.3390/molecules26092656Search in Google Scholar

Żurek, N., Pycia, K., Pawłowska, A., & Kapusta, I. T. (2022). Phytochemical Screening and Bioactive Properties of Juglans regia L. Pollen. Antioxidants, 11(10), 2046. https://doi.org/10.3390/antiox11102046Search in Google Scholar

eISSN:
2344-150X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Industrial Chemistry, other, Food Science and Technology