Acceso abierto

Effect of Complexation Conditions on Microcapsulation of Lactobacillus Casei L61 in Gellan Gum–Chitosan Gels


Cite

1. Argin-Soysal, S., Kofinas, P. & Lo, Y. M. (2009). Effect of complexation conditions on xanthan–chitosan polyelectrolyte complex gels. Food Hydrocolloids, 23(1), 202-209. DOI: 10.1016/j.foodhyd.2007.12.011.10.1016/j.foodhyd.2007.12.011 Search in Google Scholar

2. Argin, S., Kofinas, P. & Lo, Y. M. (2014). The cell release kinetics and the swelling behavior of physically crosslinked xanthan–chitosan hydrogels in simulated gastrointestinal conditions. Food Hydrocolloids, 40(oct.), 138-144. DOI: 10.1016/j.foodhyd.2014.02.01810.1016/j.foodhyd.2014.02.018 Search in Google Scholar

3. Agnihotri, S. A., Jawalkar, S. S. & Aminabhavi, T. M. (2006). Controlled release of cephalexin through gellan gum beads: effect of formulation parameters on entrapment efficiency, size, and drug release. European Journal of Pharmaceutics & Biopharmaceutics, 63(3), 0-261. DOI: 10.1016/j.ejpb.2005.12.008.10.1016/j.ejpb.2005.12.008 Search in Google Scholar

4. Fareez, I. M., Lim, S. M., Mishra, R. K. & Ramasamy, K. (2015). Chitosan coated alginate-xanthan gum bead enhanced pH and thermotolerance of lactobacillus plantarum lab12. International Journal of Biological Macromolecules, 72, 1419-1428. DOI: 10.1016/j.ijbiomac.2014.10.054.10.1016/j.ijbiomac.2014.10.054 Search in Google Scholar

5. Gareth, Gordon, Syngai, Ragupathi, Gopi & Rupjyoti, et al. (2016). Probiotics - the versatile functional food ingredients. Journal of Food Science&Technology, 53(2), 921-933. DOI: 10.1007/s13197-015-2011-0.10.1007/s13197-015-2011-0 Search in Google Scholar

6. Islam & Ariful, M. (2010). Microencapsulation of live probiotic bacteria. Journal of Microbiology & Biotechnology, 20(10), 1367-1377. DOI: 10.4014/jmb.1003.03020.10.4014/jmb.1003.03020 Search in Google Scholar

7. Kekkonen, R. A., Sysi-Aho, M., Seppanen-Laakso, T., Julkunen, I., Vapaatalo, H. & Oresic, M., et al. (2008). Effect of probiotic Lactobacillus rhamnosus GG intervention on global serum lipidomic profiles in healthy adults. World Journal of Gastroenterology,14(020), 3188-3194. DOI: 10.3748/wjg.14.3188.10.3748/wjg.14.3188 Search in Google Scholar

8. Lee, J. S., Cha, D. S., & Park, H. J. (2005). Survival of freeze-dried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles. Journal of Agricultural and Food Chemistry, 52(24), 7300-7305. DOI: 10.1021/jf040235k.10.1021/jf040235k Search in Google Scholar

9. Lee, S. T., Mi, F. L., Shen, Y. J. & Shyu, S. S. (2001). Equilibrium and kinetic studies of copper(ii) ion uptake by chitosan-tripolyphosphate chelating resin. Polymer, 42(5), 1879-1892. DOI: 10.1016/S0032-3861(00)00402-X.10.1016/S0032-3861(00)00402-X Search in Google Scholar

10. Magnin D, Lefebvre J, Chornet E, et al. (2017). Structural, thermal, physical, mechanical, and barrier properties of chitosan films with the addition of xanthan gum. Journal of Food Science, 82(3). DOI: 10.1111/1750-3841.13653.10.1111/1750-3841.1365328218968 Search in Google Scholar

11. Martín, María José, Lara-Villoslada, F., Ruiz, María Adolfina & Morales, María Encarnación. (2015). Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, 27, 15-25. DOI: 10.1016/j.ifset.2014.09.010.10.1016/j.ifset.2014.09.010 Search in Google Scholar

12. Maurstad, G., Bausch, A. R., Sikorski, P. & Bjørn T. Stokke. (2010). Electrostatically self-assembled multilayers of chitosan and xanthan studied by atomic force microscopy and micro- interferometry. Macromolecular Symposia, 227(1), 161-172. DOI: 1010.1002/masy.200550916.10.1002/masy.200550916 Search in Google Scholar

13. Norton, A. B., Cox, P. W., & Spyropoulos, F. (2011). Acid gelation of low acyl gellan gum relevant to self-structuring in the human stomach. Food Hydrocolloids, 25(5), 1105-1111. DOI: 10.1016/j.foodhyd.2010.10.007.10.1016/j.foodhyd.2010.10.007 Search in Google Scholar

14. Sarkar, S. (2010). Approaches for enhancing the viability of probiotics: a review. British Food Journal, 112(4), 329-349. DOI: 10.1108/00070701011034376.10.1108/00070701011034376 Search in Google Scholar

15. Solanki, H. K., Pawar, D. D., Shah, D. A., Prajapati, V. D., Jani, G. K. & Mulla, A. M., et al. (2013). Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BioMed Research International, 2013, 620719. DOI: 10.1155/2013/620719.10.1155/2013/620719 Search in Google Scholar

16. Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P. & Kailasapathy, K. (2000). Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology, 62(1-2), 47-55. DOI: 10.1016/S0168-1605(00)00380-9.10.1016/S0168-1605(00)00380-9 Search in Google Scholar

17. Sun, W. & Griffiths, M. W. (2000). Survival of Bifidobacteria in yoghurt and gastric juice following immobilization in gellan-xanthan beads. International Journal of Food Microbiology, 61(1), 17-25. DOI: 10.1016/S0168-1605(00)00327-5.10.1016/S0168-1605(00)00327-5 Search in Google Scholar

18. Verma, A., Dixit, R., Singh, U. P., Soni, S. & Pandit, J. K. (2011). Preparation and characterization of gellan-chitosan polyelectrolyte complex beads. LATIN AMERICAN JOURNAL OF PHARMACY, 30(6), 1186-1195. Search in Google Scholar

19. Vishwanathan, K. H., Singh, V., & Subramanian, R. (2011). Wet grinding characteristics of soybean for soymilk extraction. Journal of Food Engineering, 106(1), 28-34. DOI: 10.1016/j.jfoodeng.2011.04.002.10.1016/j.jfoodeng.2011.04.002 Search in Google Scholar

20. WHO/FAO. (2001). Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria. Food and Nutrition Paper, 71. Search in Google Scholar

eISSN:
2344-150X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Industrial Chemistry, other, Food Science and Technology