Acceso abierto

Effect of Tytanit® on the Physiological Activity of Wild Strawberry (Fragaria vesca L.) Grown in Salinity Conditions


Cite

1. Auriga, A. & Wróbel, J. (2018). Effect of effective micro-organisms on the proline and mda contents in herb plant. Fresenius Environmental Bulletin, 27(11), pp. 7409–7415.Search in Google Scholar

2. Angelini G., Ragni P., Esposito D., Giardi P., Pompili M.L., Moscardelli L. & Giardi M.T. (2001). A device to study the effect of space radiation on photosynthetic organism. In Physica Medica – Vol. XVII, Supplement 1, 1st International Workshop on pace Radiation Research and 11 th Annual NASA Space Radiation Health Investigators’ Workshop Arona (Italy), May 27-31, 2000.Search in Google Scholar

3. Arnon, D. I., Allen, M. B. & Whatley, F. R. (1956). Photosynthesis by isolated chloroplasts IV. General concept and comparison of three photochemical reactions. Biochimica et Biophysica Acta, 20(3), pp. 449–461. doi: 10.1016/0006-3002(56)90339-0.10.1016/0006-3002(56)90339-0Search in Google Scholar

4. Belkhodja, R., Morales, F., Medrano & H., Abadia, J.(1999). Effects of salinity on chlorophyll fluorescence and photosynthesis of barley (Hordeum vulgare L.) grown under a triple-line-source sprinkler system in the field. Photosynthetica, 36(3), pp. 375–387. doi:10.1023/A:1007019918225.10.1023/A:1007019918225Search in Google Scholar

5. Bates, L.S., Waldren, R.P. & Teare, I.K. (1973). Rapid determination of free proline for water stress studies. Plant and Soil 39, pp. 205–208.10.1007/BF00018060Search in Google Scholar

6. Borkowski, J., Kowalczyk, W. & Felczyńska, A. (2017). Effect of spraying with Tytanit and Wapnovit on the yield and healthiness of chinese cabbage. Zeszyty Naukowe Instytutu Ogrodnictwa 2017, 25: pp. 187 – 195.Search in Google Scholar

7. Carvajal, M. & Alcaraz, C. F. (1998). Why titanium is a beneficial element for plants. Journal of Plant Nutrition, 21(4), pp. 655–664. doi:10.1080/01904169809365433.10.1080/01904169809365433Search in Google Scholar

8. Chutipaijit, S., Cha-um, S. & Sompornpailin, K. (2011). High contents of proline and anthocyanin increase protective response to salinity in Oryza sativa L. spp. indica. Australian Journal of Crop Science, 5(10):1191-1198Search in Google Scholar

9. Dias, M. I., Barros, L., Morales, P., Cámara, M., Maria José Alves, M. J., Beatriz, M., Oliveira, P. P., Santos-Buelgaf, C. & Ferreira, I. (2016). Wild Fragaria vesca L. fruits: A rich source of bioactive phytochemicals. Food and Function, 7(11):4523–4532. doi:10.1039/c6fo01042c.10.1039/C6FO01042CSearch in Google Scholar

10. Garcıa-Sanchez, F., Jifon, L.J., Carvajala, M. & Syvertsen, P. (2002). Gas exchange, chlorophyll and nutrient contents in relation to Na+ and Cl− accumulation in ‘Sunburst’ mandarin grafted on different rootstocks. Plant Science. Vol. 162, pp. 705–712. doi.org/10.1016/S0168-9452(02)00010-910.1016/S0168-9452(02)00010-9Search in Google Scholar

11. Gomes, M.A.C., Pestana I.A., Santa-Catarina C., Hauser-Davis R.A. & Satika Suzuki M. (2017). Salinity effects on photosynthetic pigments, proline, biomass and nitric oxide in Salvinia auriculata Aubl.’ Acta Limnologica Brasiliensia, vol. 29, pp. 1-13.10.1590/s2179-975x4716Search in Google Scholar

12. Hager A. & Mayer-Berthenrath T.(1966). Die Isolier- ung und quanttative Bestimung der Carotenoide und Chlorophyll von Blatern, Algen und isolierten Chloroplasten mit Hilfe Dunnschicht-chromatographischer Methoden. Planta. Berlin, 69, pp. 198–21710.1007/BF00384873Search in Google Scholar

13. Hrubý, M., Cígler, P. & Kuzel, S. (2002). Contribution to understanding the mechanism of titanium action in plant. Journal of Plant Nutrition, 25(3), pp. 577–598. doi: 10.1081/PLN-120003383.10.1081/PLN-120003383Search in Google Scholar

14. Islam, M.M., Hoque, M.A., Okuma, E., Banu, M.N.A., Shimoishi, Y., Nakamura,Y. & Murata Y. (2009). Exogenous proline and glycinebeta- ine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J. Plant Physiol. 166, pp. 1587–1597.10.1016/j.jplph.2009.04.00219423184Search in Google Scholar

15. Jamil, A., Riaz S., Ashraf M. & Foolad M. R. (2011). Gene Expression Profiling of Plants under Salt Stress. Critical Reviews in Plant Sciences, 30 (5): 435–58. https://doi.org/10.1080/07352689.2011.605739.10.1080/07352689.2011.605739Search in Google Scholar

16. Kalaji, M.H. & Łoboda, T. (2010). Chlorophyll fluorescence in the study of the physiological state of plants. Publishing house SGGW, Warszawa.Search in Google Scholar

17. Karolewski, P. (1996). Role of proline in higher plants under conditions of abiotic stress. Botanic News. 40(3/4), pp: 67-81Search in Google Scholar

18. Kruczek, A., Ochmian, I., Krupa-Małkiewicz, M. & Lachowicz, S. (2020). Comparison of morphological, antidiabetic and antioxidant properties of goji fruits. Acta Universitatis Cibiniensis Series E: Food Technology. Vol. XXIV no. 1, pp: 1-1410.2478/aucft-2020-0001Search in Google Scholar

19. Kura-Hotta, M., Satoh, K. & Katoh, S.(1987). Relationship between photosynthesis and chlorophyll content during leaf senescence of rice seedlings. Plant Cell Physiol. Vol. 28, pp. 1321–1329Search in Google Scholar

20. Kuzel, S., Hruby, M., Cigler, P., Tlustos, P. & Nguyen Van, P. (2003). Mechanism of physilogical effects of Titanium leaf sprays on plants grown on soil. Biological Trce Element Research. Vol. 91, pp. 179 - 18910.1385/BTER:91:2:179Search in Google Scholar

21. Lichtenthaler, H. K. & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions. Portland Press, 11(5), pp. 591–592. doi: 10.1042/bst0110591.10.1042/bst0110591Search in Google Scholar

22. Michalski, P. (2008). The effect of Tytanit® on the yield structure and the fruit size of strawberry cv. “Senga Sengana” and “Elsanta”. Annales UMCS, Agricultura, 63(3). doi:10.2478/v10081-008-0038-x.10.2478/v10081-008-0038-xSearch in Google Scholar

23. Michałek, W. & Sawicka, B. (2005). Chlorophyll content and photosynthetic activity of medium late potato varieties in arable field conditions in Central and Eastern Poland. Acta Agrophys. 6(1), pp. 183–195.Search in Google Scholar

24. Mir, S., Sirousmehr, A. & Shirmohammadi, E. (2015). Effect of nano and biological fertilizers on carbohydrate and chlorophyll content of forage sorghum (Speedfeed hybrid). International Journal of Biosciences, 6(4), pp. 157–164. doi: 10.12692/ijb/6.4.157-164.10.12692/ijb/6.4.157-164Search in Google Scholar

25. Moaveni, P., Aliabadi Farahani, H. & Maroufi, K. (2011). Effect of nanoparticles Tio2 spraying on deferent parameters of wheat (Triticum aestivum L.). Advances in Environmental Biology. 2011;5(8), pp. 2217-2219.Search in Google Scholar

26. Muñoz, C., Sanchez-Sevilla, J.F., Botella, M.A., Hoffmann, T., Schwab, W. & Valpuesta, V. (2011). Polyphenol composition in the ripe fruits of fragaria species and transcriptional analyses of key genes in the pathway. Journal of Agricultural and Food Chemistry, 59(23), pp. 12598–12604. doi: 10.1021/jf203965j.10.1021/jf203965jSearch in Google Scholar

27. Muscolo, A., Panuccio, M. R. & Sidari, M. (2003). Effects of salinity on growth, carbohydrate metabolism and nutritive properties of kikuyu grass (Pennisetum clandestinum Hochst). Plant Science, 164(6), pp. 1103–1110. doi: 10.1016/S0168-9452(03)00119-5.10.1016/S0168-9452(03)00119-5Search in Google Scholar

28. Nadi, E., Aynehband A.& Mojaddam M. (2013). Effect of nano-iron chelate fertilizer on grain yield, protein percent and chlorophyll content of Faba bean (Vicia faba L.). International Journal of Biosciences 3(9), pp: 267-272. doi.org/10.12692/ijb/3.9.267-2710.12692/ijb/3.9.267-272Search in Google Scholar

29. Noreen, Z. & Ashraf, M. (2009). Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. Journal of Plant Physiology, 166(16), pp. 1764–1774. doi:10.1016/j.jplph.2009.05.005.10.1016/j.jplph.2009.05.005Search in Google Scholar

30. Oancea, S. & Oprean, L. (2011). Anthocyanins, from biosynthesis in plants to human health benefits. Acta Universitatis Cibiniensis Series E: Food Technology. Vol. XV, no.1, pp: 3 - 16Search in Google Scholar

31. Pereira W.E., de Siqueria D.L., Martinez C. A. & Puiatti M. (2000). Gas exange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. J. Plant Plant Physiol. 157, pp. 513-520.10.1016/S0176-1617(00)80106-6Search in Google Scholar

32. Parihar, P., Singh S., Singh R., Singh, V.P. & Prasad, S.M. (2015). Effect of salinity stress on plants and its tolerance strategies: A Review. Environmental Science and Pollution Research, 22 (6), pp. 4056–75. https://doi.org/10.1007/s11356-014-3739-1.10.1007/s11356-014-3739-1Search in Google Scholar

33. Rahimi, A., Biglarifard, A. & Firozabadi, M. (2011). Influence of NaCl salinity on some physiological aspect of strawberry cv. Camarosa. Russian Agricultural Sciences, 37(5), pp. 378–384. doi: 10.3103/S1068367411050028.10.3103/S1068367411050028Search in Google Scholar

34. Romero-Aranda, R., Soria, T. & Cuartero, J. (2001). Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Science, 160(2), pp. 265–272. doi:10.1016/S0168-9452(00)00388-5.10.1016/S0168-9452(00)00388-5Search in Google Scholar

35. Saha, P., Chatterjee, P. & Biswas, A. K. (2010). NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian journal of experimental biology, 48(6), pp. 593–600.Search in Google Scholar

36. Samadi, N. (2014).Effect of TiO2 and TiO2 nanoparticle on germination, root and shoot length and photosynthetic pigments of Mentha piperita. International Journal of Plant & Soil Science, 3(4), pp. 408–418. doi: 10.9734/ijpss/2014/7641.10.9734/IJPSS/2014/7641Search in Google Scholar

37. Samadi, N., Yahyaabadi, S. & Rezayatmand, Z. (2015). Stress effects of TiO2 and NP-TiO2 on catalase enzyme and some physiological characteristics of Melissa officinalis L.. European Journal of Medicinal Plants, 9(1), pp. 1–11. doi:10.9734/ejmp/2015/18055.10.9734/EJMP/2015/18055Search in Google Scholar

38. Schweiger, J., Lang, M. & Lichtenthaler, H.K. (1996). Differences in fluorescence excitation spectra of leaves between stressed and non-stressed plants. J Plant Physiol. 148(5), pp: 536–54710.1016/S0176-1617(96)80073-3Search in Google Scholar

39. Shahbaz, M. & Ashraf, M. (2013). Improving Salinity Tolerance in Cereals. Critical Reviews in Plant Sciences, 32(4), pp. 237–249. doi: 10.1080/07352689.2013.758544.10.1080/07352689.2013.758544Search in Google Scholar

40. Shrivastava, P. & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), pp. 123–131. doi:10.1016/j.sjbs.2014.12.001.10.1016/j.sjbs.2014.12.001Search in Google Scholar

41. Sultana, N., Ikeda, T. & Itoh, R. (1999). Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environmental and Experimental Botany. Elsevier, 42(3), pp. 211–220. doi:10.1016/S0098-8472(99)00035-0.10.1016/S0098-8472(99)00035-0Search in Google Scholar

42. Wróbel, J., Auriga, A. & Mielczarek, M. (2016). The effect of salinity and nitrogen deficiency on the changes in selected physiological parameters of common bean (Phaseoleus vulgaris L.) grown in hydroponic cultures. Journal of Ecological Engineering, 17(4), pp. 321–327. doi:10.12911/22998993/64557.10.12911/22998993/64557Search in Google Scholar

43. Yamaguchi, T. & Blumwald, E. (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends in Plant Science, 10(12), pp. 615–620. doi:10.1016/J.TPLANTS.2005.10.002.10.1016/j.tplants.2005.10.00216280254Search in Google Scholar

44. Yamasaki S.& Dillenburg L.R. (1999). Measurements of leaf relative water content in Araucaria angustifolia. Rev. Bras. Fisiol. Vegetal. 11(2), pp: 69–75.Search in Google Scholar

45. Xiaoqing Y., Suiqi Z., Zongsuo L & Ying S. (2004). Effects of water stress on chlorophyll fluorescence parameters of different drought resistance winter wheat cultivars seedlings. Acta Botanica Boreali-Occidentalia Sinica, 24(5), pp. 812-816.Search in Google Scholar

46. Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), pp. 66–71. doi:10.1016/S1360-1385(00)01838-0.10.1016/S1360-1385(00)01838-0Search in Google Scholar

eISSN:
2344-150X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Industrial Chemistry, other, Food Science and Technology