Cite

1. Analytica EBC, 1998. European Brewery Convention. Verlag Hans Carl Getränke- Fachverlag, Nürnberg, Germany.Search in Google Scholar

2. Barbosa, C., Lage, P., Esteves, M., Chambel, L., Mendes-Faia, A. & Mendes-Ferreira, A. (2018). Molecular and phenotypic characterization of Metschnikowia pulcherrima strains from Douro wine region. Fermentation, 4(1), 8.DOI: 10.3390/fermentation4010008.10.3390/fermentation4010008Search in Google Scholar

3. Basso, R.F., Alcarde, A.R. & Portugal, C.B. (2016). Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Research International, 86, 112–120. DOI: 10.1016/j.foodres.2016.06.002.10.1016/j.foodres.2016.06.002Search in Google Scholar

4. Bellut, K. & Arendt, E.K. (2019). Chance and Challenge: Non-Saccharomyces Yeasts in Nonalcoholic and Low Alcohol Beer Brewing–A Review. Journal of the American Society of Brewing Chemists, 77(2), 77–91. DOI: 10.1080/03610470.2019.1569452.10.1080/03610470.2019.1569452Search in Google Scholar

5. Birch, R.M. & Walker, G.M. (2000). Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme and Microbial Technology, 26(9-10), 678–687. DOI: 10.1016/S0141-0229(00)00159-9.10.1016/S0141-0229(00)00159-9Search in Google Scholar

6. Briggs, D.E., Brookes, P.A., Stevens, R. & Boulton, C.A. (2004). Brewing: science and practice. Woodhead Publishing Limited Cambridge London..10.1201/9780203024195Search in Google Scholar

7. Callejo, M.J., González, C. & Morata, A. (2017). Use of non-Saccharomyces yeasts in bottle fermentation of aged beers. Brewing Technology, 101–119. DOI: DOI: 10.5772/intechopen.68793.10.5772/intechopen.68793Search in Google Scholar

8. Campbell, I. (2001). Kształtowanie właściwości sensorycznych piwa przez dobór warunków fermentacji. Przemysł Fermentacyjny i Owocowo-Warzywny, 8(45), 44–46.Search in Google Scholar

9. Canonico, L., Agarbati, A., Comitini, F. & Ciani, M. (2016). Torulaspora delbrueckii in the brewing process: A new approach to enhance bioflavour and to reduce ethanol content. Food Microbiology, 56, 45–51. DOI: 10.1016/j.fm.2015.12.005.10.1016/j.fm.2015.12.00526919817Search in Google Scholar

10. Canonico, L., Comitini, F. & Ciani, M. (2017). Torulaspora delbrueckii contribution in mixed brewing fermentations with different Saccharomyces cerevisiae strains. International Journal of Food Microbiology, 259, 7–13. DOI: 10.1016/j.ijfoodmicro.2017.07.017.10.1016/j.ijfoodmicro.2017.07.01728778010Search in Google Scholar

11. Colicchio, T. (2012). The Oxford Companion to Beer. USA.Search in Google Scholar

12. Contreras, A., Hidalgo, C., Henschke, P.A., Chambers, P.J., Curtin, C. & Varela, C. (2014). Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Applied and Environmental Microbiology, 80(5), 1670–1678. DOI: 10.1128/AEM.03780-13.10.1128/AEM.03780-13395760424375129Search in Google Scholar

13. Cordero-Bueso, G., Arroyo, T., Serrano, A. & Valero, E. (2011). Influence of different floor management strategies of the vineyard on the natural yeast population associated with grape berries. International Journal of Food Microbiology, 148(1), 23–29. DOI: 10.1016/j.ijfoodmicro.2011.04.021.10.1016/j.ijfoodmicro.2011.04.02121620506Search in Google Scholar

14. Daniels, R. (1998). Designing great beers: The ultimate guide to brewing classic beer styles. Brewers Publications, Boulder, CO.Search in Google Scholar

15. Dlamini, B.C., Buys, E.M. & Taylor, J.R.N. (2015). Effect of sorghum type and malting on production of free amino nitrogen in conjunction with exogenous protease enzymes. Journal of the Science of Food and Agriculture, 95(2), 417–422. DOI: 10.1002/jsfa.6739.10.1002/jsfa.6739Search in Google Scholar

16. Domizio, P., House, J.F., Joseph, C.M.L., Bisson, L.F. & Bamforth, C.W. (2016). Lachancea thermotolerans as an alternative yeast for the production of beer. Journal of the Institute of Brewing, 122(4), 599–604. DOI: 10.1002/jib.362.10.1002/jib.362Search in Google Scholar

17. Ernandes, J.R., Williams, J.W., Russell, I. & Stewart, G.G. (1993). Effect of yeast adaptation to maltose utilization on sugar uptake during the fermentation of brewer’s wort. Journal of the Institute of Brewing, 99(1), 67–71. DOI: 10.1002/j.2050-0416.1993.tb01149.x.10.1002/j.2050-0416.1993.tb01149.xSearch in Google Scholar

18. Eßlinger, H.M. (2009). Handbook of brewing: processes, technology, markets. John Wiley & Sons.10.1002/9783527623488Search in Google Scholar

19. Evans, E., van Wegen, B., Ma, Y. & Eglinton, J. (2003). The impact of the thermostability of α-amylase, β-amylase, and limit dextrinase on potential wort fermentability. Journal of the American Society of Brewing Chemists, 61(4), 210–218. DOI: 10.1094/ASBCJ-61-0210.10.1094/ASBCJ-61-0210Search in Google Scholar

20. Fix, G. (1999). Principles of brewing science: A study of serious brewing issues. Brewers Publications.Search in Google Scholar

21. Hill, A.E. & Stewart, G.G. (2019). Free Amino Nitrogen in Brewing. Fermentation, 5(1), 22. DOI: 10.3390/fermentation5010022.10.3390/fermentation5010022Search in Google Scholar

22. King, A. & Richard Dickinson, J. (2000). Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis. Yeast, 16(6), 499–506. DOI: 10.1002/(SICI)1097-0061(200004)16:6<499::AID-YEA548>3.0.CO;2-E.10.1002/(SICI)1097-0061(200004)16:6<499::AID-YEA548>3.0.CO;2-ESearch in Google Scholar

23. Klein, M., Swinnen, S., Thevelein, J.M. & Nevoigt, E. (2017). Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities. Environmental Microbiology, 19(3), 878–893. DOI: 10.1111/1462-2920.13617.10.1111/1462-2920.13617Search in Google Scholar

24. MacDiarmid, C.W., Milanick, M.A. & Eide, D.J. (2002). Biochemical Properties of Vacuolar Zinc Transport Systems of Saccharomyces cerevisiae. Journal of Biological Chemistry, 277(42), 39187–39194. DOI: 10.1074/jbc.M205052200.10.1074/jbc.M205052200Search in Google Scholar

25. Matz, S.A. (1991). Chemistry and technology of cereals as food and feed. Springer Science & Business Media.Search in Google Scholar

26. Meneghin, M.C., Bassi, A.P.G., Codato, C.B., Reis, V.R. & Ceccato-Antonini, S.R. (2013). Fermentative and growth performances of Dekkera bruxellensis in different batch systems and the effect of initial low cell counts in co-cultures with Saccharomyces cerevisiae. Yeast, 30(8), 295–305. DOI: 10.1002/yea.2959.10.1002/yea.2959Search in Google Scholar

27. Michel, M., Kopecká, J., Meier-Dörnberg, T., Zarnkow, M., Jacob, F. & Hutzler, M. (2016). Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Yeast, 33(4), 129–144. DOI: 10.1002/yea.3146.10.1002/yea.314626647111Search in Google Scholar

28. Muffler, K., Leipold, D., Scheller, M.-C., Haas, C., Steingroewer, J., Bley, T., Neuhaus, H.E., Mirata, M.A., Schrader, J. & Ulber, R. (2011). Biotransformation of triterpenes. Process Biochemistry, 46(1),1–15. DOI: 10.1016/j.procbio.2010.07.015.10.1016/j.procbio.2010.07.015Search in Google Scholar

29. De Nicola, R. & Walker, G.M. (2009). Accumulation and cellular distribution of zinc by brewing yeast. Enzyme and Microbial Technology, 44(4), 210–216. DOI: 10.1016/j.enzmictec.2008.11.008.10.1016/j.enzmictec.2008.11.008Search in Google Scholar

30. Nielsen, S. (2005). Handbook of food analysis, physical characterization and nutrient analysis. Journal of Food Quality, 28(5-6), 507–508.10.1111/j.1745-4557.2005.00030.xSearch in Google Scholar

31. Novozymes. Food&Beverages. Brewing Handbook. (2013). Bagsvaerd.Search in Google Scholar

32. Osburn, K., Amaral, J., Metcalf, S.R., Nickens, D.M., Rogers, C.M., Sausen, C., Caputo, R., Miller, J., Li, H. & Tennessen, J.M. (2018). Primary souring: A novel bacteria-free method for sour beer production. Food microbiology, 70,76–84. DOI: 10.1016/j.fm.2017.09.007.10.1016/j.fm.2017.09.00729173643Search in Google Scholar

33. Padilla, B., Gil, J. V & Manzanares, P. (2018). Challenges of the non-conventional yeast Wickerhamomyces anomalus in winemaking. Fermentation, 4(3), 68. DOI: 10.3390/fermentation4030068.10.3390/fermentation4030068Search in Google Scholar

34. Poreda, A., Antkiewicz, P., Tuszyński, T. & Makarewicz, M. (2009). Accumulation and release of metal ions by brewer’s yeast during successive fermentations. Journal of the Institute of Brewing, 115(1), 78–83. DOI: 10.1002/j.2050-0416.2009.tb00347.x.10.1002/j.2050-0416.2009.tb00347.xSearch in Google Scholar

35. Poreda, A., Bijak, M., Zdaniewicz, M., Jakubowski, M. & Makarewicz, M. (2015). Effect of wheat malt on the concentration of metal ions in wort and brewhouse by-products. Journal of the Institute of Brewing, 121(2), 224–230. DOI: 10.1002/jib.226.10.1002/jib.226Search in Google Scholar

36. Procopio, S., Qian, F. & Becker, T. (2011). Function and regulation of yeast genes involved in higher alcohol and ester metabolism during beverage fermentation. European Food Research and Technology, 233(5), 721–729. DOI: 10.1007/s00217-011-1567-9.10.1007/s00217-011-1567-9Search in Google Scholar

37. Rees, E.M.R. & Stewart, G.G. (1999). Effects of magnesium, calcium and wort oxygenation on the fermentative performance of ale and lager strains fermenting normal and high gravity worts. Journal of the Institute of Brewing, 105(4), 211–218. DOI: 10.1002/j.2050-0416.1999.tb00021.x.10.1002/j.2050-0416.1999.tb00021.xSearch in Google Scholar

38. Rollero, S., Bloem, A., Ortiz-Julien, A., Camarasa, C. & Divol, B. (2018). Fermentation performances and aroma production of non-conventional wine yeasts are influenced by nitrogen preferences. FEMS Yeast Research, 18(5). DOI: 10.1093/femsyr/foy055.10.1093/femsyr/foy05529741618Search in Google Scholar

39. Romano, P. & Suzzi, G. (1993). Higher alcohol and acetoin production by Zygosaccharomyces wine yeasts. Journal of Applied Bacteriology, 75(6), 541–545. DOI: 10.1111/j.1365-2672.1993.tb01592.x.10.1111/j.1365-2672.1993.tb01592.xSearch in Google Scholar

40. Sadineni, V., Kondapalli, N. & Obulam, V.S.R. (2012). Effect of co-fermentation with Saccharomyces cerevisiae and Torulaspora delbrueckii or Metschnikowia pulcherrima on the aroma and sensory properties of mango wine. Annals of Microbiology, 62(4), 1353–1360. DOI: 10.1007/s13213-011-0383-6.10.1007/s13213-011-0383-6Search in Google Scholar

41. Schifferdecker, A.J., Dashko, S., Ishchuk, O.P. & Piškur, J. (2014). The wine and beer yeast Dekkera bruxellensis. Yeast, 31(9), 323–332. DOI: 10.1002/yea.3023.10.1002/yea.3023425707024932634Search in Google Scholar

42. Smith, B.D. & Divol, B. (2016). Brettanomyces bruxellensis, a survivalist prepared for the wine apocalypse and other beverages. Food Microbiology, 59, 161–175. DOI: 10.1016/j.fm.2016.06.008.10.1016/j.fm.2016.06.00827375257Search in Google Scholar

43. Starcher, B. (2001). A ninhydrin-based assay to quantitate the total protein content of tissue samples. Analytical Biochemistry, 292(1), 125–129. DOI: 10.1006/abio.2001.5050.10.1006/abio.2001.505011319826Search in Google Scholar

44. Stehlik-Tomas, V., Gulan Zetić, V., Stanzer, D., Grba, S. & Vahčić, N. (2004). Zinc, copper and manganese enrichment in yeast Saccharomyces cerevisae. Food Technology and Biotechnology, 42(2), 115–120. DOI: 10.1006/abio.2001.5050.10.1006/abio.2001.5050Search in Google Scholar

45. Szigeti, R., Miseta, A. & Kellermayer, R. (2005). Calcium and magnesium competitively influence the growth of a PMR1 deficient Saccharomyces cerevisiae strain. FEMS Microbiology Letters, 251(2), 333–339. DOI: 10.1016/j.femsle.2005.08.017.10.1016/j.femsle.2005.08.01716143464Search in Google Scholar

46. Tataridis, P., Drosou, F., Kanellis, A., Kechagia, D., Logothetis, S., Chatzilazarou, A. & Dourtoglou, V. (2016). Differentiating beer aroma, flavor and alcohol content through the use of Torulaspora delbrueckii.Search in Google Scholar

47. The National Institute of Standards and Technology (NIST). Available at: http://webbook.nist.gov/chemistry/ [2019-12-23]Search in Google Scholar

48. Uscanga, M.G.A., Delia, M.-L. & Strehaiano, P. (2003). Brettanomyces bruxellensis: effect of oxygen on growth and acetic acid production. Applied Microbiology and Biotechnology, 61(2), 157–162. DOI: 10.1007/s00253-002-1197-z.10.1007/s00253-002-1197-z12655458Search in Google Scholar

49. Vanderhaegen, B., Delvaux, F., Daenen, L., Verachtert, H. & Delvaux, F.R. (2007). Aging characteristics of different beer types. Food Chemistry, 103(2), 404–412. DOI: 10.1016/j.foodchem.2006.07.062.10.1016/j.foodchem.2006.07.062Search in Google Scholar

50. Varela, C. & Borneman, A.R. (2017). Yeasts found in vineyards and wineries. Yeast, 34(3), 111–128. DOI: 10.1002/yea.3219.10.1002/yea.321927813152Search in Google Scholar

51. Verstrepen, K.J., Derdelinckx, G., Verachtert, H. & Delvaux, F.R. (2003). Yeast flocculation: what brewers should know. Applied Microbiology and Biotechnology, 61(3), 197–205. DOI: 10.1007/s00253-002-1200-8.10.1007/s00253-002-1200-812698276Search in Google Scholar

52. Vervoort, Y., Herrera-Malaver, B., Mertens, S., Guadalupe Medina, V., Duitama, J., Michiels, L., Derdelinckx, G., Voordeckers, K. & Verstrepen, K.J. (2016). Characterization of the recombinant Brettanomyces anomalus β-glucosidase and its potential for bioflavouring. Journal of Applied Microbiology, 121(3), 721–733. DOI: 10.1111/jam.13200.10.1111/jam.13200668031427277532Search in Google Scholar

53. Wietstock, P.C., Kunz, T., Waterkamp, H. & Methner, F.-J. (2015). Uptake and release of Ca, Cu, Fe, Mg, and Zn during beer production. Journal of the American Society of Brewing Chemists, 73(2), 179–184. DOI: 10.1094/ASBCJ-2015-0402-01.10.1094/ASBCJ-2015-0402-01Search in Google Scholar

54. Yeo, H.Q. & Liu, S. (2014). An overview of selected specialty beers: Developments, challenges and prospects. International Journal of Food Science & Technology, 49(7), 1607–1618. DOI: 10.1111/ijfs.12488.10.1111/ijfs.12488Search in Google Scholar

55. Younis, O.S. & Stewart, G.G. (1998). Sugar uptake and subsequent ester and higher alcohol production by Saccharomyces cerevisiae. Journal of the Institute of Brewing, 104(5), 255–264. DOI: 10.1002/j.2050-0416.1998.tb00998.x.10.1002/j.2050-0416.1998.tb00998.xSearch in Google Scholar

56. Zdaniewicz, M., Satora, P., Pater, A., Bogacz, S. (2020). Low lactic acid-producing strain of Lachancea thermotolerans as a new starter for beer production. Biomolecules, 256(10), 1-16. DOI: 10..3390/biom10020256.10.3390/biom10020256707238832046171Search in Google Scholar

57. Zhao, X., Procopio, S. & Becker, T. (2015). Flavor impacts of glycerol in the processing of yeast fermented beverages: a review. Journal of Food Science and Technology, 52(12), 7588–7598. DOI: 10.1007/s13197-015-1977-y.10.1007/s13197-015-1977-y464886626604336Search in Google Scholar

58. Zironi, R., Romano, P., Suzzi, G., Battistutta, F. & Comi, G. (1993). Volatile metabolites produced in wine by mixed and sequential cultures of Hanseniaspora guilliermondii or Kloeckera apiculata and Saccharomyces cerevisiae. Biotechnology Letters, 15(3), 235–238. DOI: 10.1007/BF00128311.10.1007/BF00128311Search in Google Scholar

eISSN:
2344-150X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Industrial Chemistry, other, Food Science and Technology