Acceso abierto

Biscuits from Fermented Roasted Buckwheat Flour - Phenolics Profile and Bioaccessible Angiotensin Converting Enzyme Inhibitory Activity


Cite

1. AACC International (2000). Baking quality of cookie flour – micro method. Method 10-52, Approved Methods of the American Association of Cereal Chemists, 10th ed. AACC International, St. Paul, MN, USASearch in Google Scholar

2. Abdel-Aal, E-S.M. & Rabalski, I. (2013). Effect of baking on free and bound phenoli acids in wholegrain bakery products. J. Cereal Sci., 57, 312-318. DOI: 10.1016/j.jcs.2012.12.00110.1016/j.jcs.2012.12.001Search in Google Scholar

3. Magro, A.E.A., Carvalho Silva, L., Boscariol Rasera, G. & Soares de Castro, R.J. (2019). Solid-state fermentation as an efficient strategy for the biotransformation of lentils: enhancing their antioxidant and antidiabetic potentials. Bioresources and Bioprocessing, 6, 38. DOI: 10.1186/s40643-019-0273-510.1186/s40643-019-0273-5Search in Google Scholar

4. Baráth, Á., Halász, A., Németh, E. & Zalán, Z. (2004). Selection of LAB strains for fermented red beet juice production. Eur. Food Res. Technol., 218(2), 184-187. DOI: 10.1007/s00217-003-0832-y10.1007/s00217-003-0832-ySearch in Google Scholar

5. Bei, Q., Wu, Z. & Chen, G. (2020). Dynamic changes in the phenolic composition and antioxidant activity of oats during simultaneous hydrolysis and fermentation. Food Chem., 305, 125269. DOI: 10.1016/j.foodchem.2019.12526910.1016/j.foodchem.2019.12526931514049Search in Google Scholar

6. Charalampopoulos, D., Vazquez, J.A. & Pandiella, S.S. (2009). Modelling and validation of Lactobacillus plantarum fermentations in cereal-based media with different sugar concentrations and buffering capacities. Biochem. Engine. J., 44(2), 96-105. DOI: 10.1016/j.bej.2008.11.00410.1016/j.bej.2008.11.004Search in Google Scholar

7. Coda, R., Di Cagno, R., Gobbetti, M. & Rizzello, C.G. (2014). Sourdough lactic acid bacteria: exploration of nonwheat cereal-based fermentation. Food Microbiol., 37, 51-58. DOI: 10.1016/j.fm.2013.06.01810.1016/j.fm.2013.06.01824230473Search in Google Scholar

8. Cordova, A.C., Sumpio, B.J. & Sumpio, B.E. (2012). Perfecting the plate: Adding cardioprotective compounds to the diet. J. Am. College Surgeons, 214, 97-114. DOI: 10.1016/j.jamcollsurg.2011.09.02310.1016/j.jamcollsurg.2011.09.02322055584Search in Google Scholar

9. Delgado-Andrade, C., Conde-Aguilera, J.A., Haro, A., De La Cueva, S.P. & Rufián–Henares, J.A. (2010). A combined procedure to evaluate the global antioxidant response of bread. J. Cereal Sci., 56(2), 239-246. DOI: 10.1016/j.jcs.2010.05.01310.1016/j.jcs.2010.05.013Search in Google Scholar

10. Fujita, H., Yokoyama, K. & Yoshikawa, M. (2000). Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J. Food Sci., 65, 564-569. DOI: 10.1111/j.1365-2621.2000.tb16049.x10.1111/j.1365-2621.2000.tb16049.xSearch in Google Scholar

11. Galleano, M., Pechanova, O. & Fraga, C.G. (2010). Hypertension, nitric oxide, oxidants, and dietary polyphenols. Curr. Pharm. Biotechno., 11, 837–848. DOI: 10.2174/13892011079326211410.2174/13892011079326211420874688Search in Google Scholar

12. Gawlik-Dziki, U., Durak, A., Jamioł, M. & Świeca, M.I. (2016). Interactions between antiradical and anti-inflammatory compounds from coffee and coconut affected by gastrointestinal digestion - in In vitro study. LWT - Food Sci. Technol., 69, 506-514. DOI: 10.1016/j.lwt.2016.01.07610.1016/j.lwt.2016.01.076Search in Google Scholar

13. Giménez-Bastida, J.A. & Zieliński, H. (2015). Buckwheat as a functional food and its effects on health. J. Agr. Food Chem., 63(36), 7896-7913. DOI: 10.1021/acs.jafc.5b0249810.1021/acs.jafc.5b0249826270637Search in Google Scholar

14. Giménez-Bastida, J.A., Piskuła, M.K. & Zieliński, H. (2015). Recent advances in development of gluten-free buckwheat products. Trends Food Sci. Tech., 44, 58-65. DOI: 10.1016/j.tifs.2015.02.01310.1016/j.tifs.2015.02.013Search in Google Scholar

15. Guang C. & Philips R.D. (2009). Plant Food-Derived Angiotensin I Converting Enzyme Inhibitory Peptides. J. Agr. Food Chem., 57, 5113–5120. DOI: 10.1021/jf900494d10.1021/jf900494d19449887Search in Google Scholar

16. Hidalgo, A. & Brandolini A. (2011). Heat damage of water biscuits from einkorn, durum and bread wheat flours. Food Chem., 128, 471-478. DOI: 10.1016/j.foodchem.2011.03.05610.1016/j.foodchem.2011.03.05625212158Search in Google Scholar

17. Higasa, S., Fujihara, S., Hayashi, A., Kimoto, K. & Aoyagi, Y. (2011). Distribution of a novel angiotensin I-converting enzyme inhibitory substance (2’‘-hydroxynicotianamine) in the flour, plant parts, and processed products of buckwheat. Food Chem., 125, 607-613. DOI: 10.1016/j.foodchem.2010.08.07410.1016/j.foodchem.2010.08.074Search in Google Scholar

18. Iwaniak, A., Minkiewicz, P. & Darewicz M. (2014). Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Com. Rev. Food Sci. Food Safety, 13, 114-134. DOI: 10.1111/1541-4337.1205110.1111/1541-4337.1205133412648Search in Google Scholar

19. Jakobek, L. (2015). Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem., 175(Supplement C), 556–567. DOI: 10.1016/j.foodchem.2014.12.01310.1016/j.foodchem.2014.12.01325577120Search in Google Scholar

20. Je, J.Y., Qian, Z.J., Byun, H.G. Kim, S.K. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem., 42, 840–846. DOI: 10.1016/j.procbio.2007.02.00610.1016/j.procbio.2007.02.006Search in Google Scholar

21. Juan, M.Y., Wu, C.H. & Chou, C.C. (2010). Fermentation with Bacillus spp. as a bioprocess to enhance anthocyanin content, the angiotensin converting enzyme inhibitory effect, and the reducing activity of black soybeans. Food Microbiol., 27, 918-923. DOI: 10.1016/j.fm.2010.05.00910.1016/j.fm.2010.05.00920688233Search in Google Scholar

22. Kawakami, A., Inbe, T., Kayahara, H. & Horii, A. (1995). Preparations of enzymatic hydrolysates of buckwheat globulin and their angiotensin I converting enzyme inhibitory activities. Curr. Adv. Buckwheat Res., 2, 927-934.Search in Google Scholar

23. Kim, S.K., Byun, H.G., Park, P.J. & Shahidi, F. (2001). Angiotensin I converting enzyme inhibitory peptides purified from bovine skin gelatin hydrolysate. J. Agr. Food Chem., 49, 2992–2997. DOI: 10.1021/jf001119u10.1021/jf001119uSearch in Google Scholar

24. Kuba, M., Tana, C., Tawata, S. & Yasuda, M. (2005). Production of angiotensin I-converting enzyme inhibitory peptides from soybean protein with Monascus purpureus acid proteinase. Process Biochem., 40, 2191-2196. DOI: 10.1016/j.procbio.2004.08.01010.1016/j.procbio.2004.08.010Search in Google Scholar

25. Kumar, R., Kumar, A., Sharma, R. & Baruwa, A. (2010). Pharmacological review on natural ACE inhibitors. Der Pharmacia Lettre, 2(2), 273-293.Search in Google Scholar

26. Lafarga, T., Gallagher, E., Bademunt, A., Bobo, G., Echeverria, G., Viñas, I. & Aguiló-Aguayo, I. (2019). Physiochemical and nutritional characteristics, bioaccessibility and sensory acceptance of baked crackers containing broccoli co-products. Int. J. Food Sci. Technol., 54, 634-640. DOI: 10.1111/ijfs.1390810.1111/ijfs.13908Search in Google Scholar

27. Lacaille-Dubois, M.A., Franck, U. & Wagner, H. (2001). Search for potential Angiotensin Converting Enzyme (ACE)-inhibitors from plants. Phytomedicine, 8, 47–52. DOI: 10.1078/0944-7113-0000310.1078/0944-7113-00003Search in Google Scholar

28. Li, Ch-H., Matsui, T., Matsumoto, K., Yamasaki, R. & Kawasaki, T. (2002). Latent Production of Angiotensin I-Converting Enzyme Inhibitors from Buckwheat Protein. J. Peptide Sci., 8, 267-274. DOI: 10.1002/psc.38710.1002/psc.387Search in Google Scholar

29. Matsui, T., Li, C.H. & Osajima, Y. (1999). Preparation and characterization novel bioactive peptides responsible for angiotensin I converting enzyme inhibition from wheat germ. J. Peptide Sci., 5, 289-297. DOI: 10.1002/(SICI)1099-1387(199907)5:7<289::AID-PSC196>3.0.CO;2-610.1002/(SICI)1099-1387(199907)5:7<289::AID-PSC196>3.0.CO;2-6Search in Google Scholar

30. Miguel, M., Contreras, M.M., Recio, I. & Aleixandre, A. (2009). ACE inhibitory and antihypertensive properties of a bovine casein hydrolysate. Food Chem., 12, 211–214. DOI: 10.1016/j.foodchem.2008.05.04110.1016/j.foodchem.2008.05.041Search in Google Scholar

31. Mojica, L., Chen, K. & González de Mejia, E. (2015). Impact of Commercial Precooking of Common Bean (Phaseolus vulgaris) on the Generation of Peptides, After Pepsin-Pancreatin Hydrolysis, Capable to Inhibit Dipeptidyl Peptidase-IV. J. Food Sci., 80, 188-198. DOI: 10.1111/1750-3841.1272610.1111/1750-3841.12726Search in Google Scholar

32. Muller, M.R., Wolfrum, G., Stolz, P., Ehrmann, M.A. & Vogel, R.F. (2001). Monitoring the growth of Lactobacillus species during a rye flour fermentation. Food Microbiol., 18(2), 217–227. DOI: 10.1006/fmic.2000.039410.1006/fmic.2000.0394Search in Google Scholar

33. Pan, M.-H., Lai, C.-S., Dushenkov, S. & Ho, C.-T. (2009). Modulation of inflammatory genes by natural dietary bioactive compounds. J. Agr. Food Chem., 57, 4467–4477. DOI: 10.1021/jf900612n10.1021/jf900612nSearch in Google Scholar

34. Park, J.W., Lee, Y.J. & Yoon, S. (2007). Total flavonoids and phenolics in fermented soy products and their effects on antioxidant activities determined by different assays. J. Korean Society Food Cul., 22, 353-358.Search in Google Scholar

35. Pyo, Y.H. & Lee, T.C. (2007). The potential antioxidant capacity and angiotensin I-converting enzyme inhibitory activity of Monascus-fermented soybean extracts: evaluation of Monascus-fermented soybean extracts as multifunctional food additives. J. Food Sci., 72, S218–S223. DOI: 10.1111/j.1750-3841.2007.00312.x10.1111/j.1750-3841.2007.00312.x17995818Search in Google Scholar

36. Ren, X., Ma, H., Mao, S. & Zhou, H. (2014). Effects of sweeping frequency ultrasound treatment on enzymatic preparations of ACE-inhibitory peptides from zein. Eur. Food Res. Technol., 238, 435–442. DOI: 10.1007/s00217-013-2118-310.1007/s00217-013-2118-3Search in Google Scholar

37. Rui, X., Wen, D., Li, W., Chen, X., Jiang, M. & Dong, M. (2015). Enrichment of ACE inhibitory peptides in navy bean (Phaseolus vulgaris) using lactic acid bacteria. Food Function, 6, 622–629. DOI: 10.1039/c4fo00730a10.1039/C4FO00730ASearch in Google Scholar

38. Sentandreu, M.Á. & Toldrá, F. (2006). A rapid, simple and sensitive fluorescence method for the assay of angiotensin I converting enzyme. Food Chem., 97(3), 546-554. DOI: 10.1016/j.foodchem.2005.06.00610.1016/j.foodchem.2005.06.006Search in Google Scholar

39. Spínola, V., Llorent-Martínez, E.J. & Castilhoa, P.C. (2018). Antioxidant polyphenols of Madeira sorrel (Rumex maderensis): How do they survive to in vitro simulated gastrointestinal digestion? Food Chem., 259, 105–112. DOI: 10.1016/j.foodchem.2018.03.11210.1016/j.foodchem.2018.03.11229680032Search in Google Scholar

40. Torino, M.I., Limón, R.I., Martínez-Villaluenga, C., Mäkinen, S., Pihlanto, A., Vidal-Valverde, C. & Frias, J. (2013). Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem., 136, 1030–1037. DOI: 10.1016/j.foodchem.2012.09.01510.1016/j.foodchem.2012.09.01523122159Search in Google Scholar

41. Tsai, H., Deng, H., Tsai, S. & Hsu, Y. (2012). Bioactivity comparison of extracts from various parts of common and tartary buckwheats: evaluation of the antioxidant- and angiotensin converting enzyme inhibitory activities. Chem. Central J., 6, 78-82. DOI: 10.1186/1752-153X-6-7810.1186/1752-153X-6-78348562922853321Search in Google Scholar

42. Wang, C.; Tian, J.; Wang, Q. (2011). ACE inhibitory and antihypertensive properties of apricot almond meal hydrolysate. Eur. Food Res. Technol., 232, 549–556. DOI: 10.1007/s00217-010-1411-710.1007/s00217-010-1411-7Search in Google Scholar

43. Wiczkowski, W., Szawara-Nowak, D., Sawicki, T., Mitrus, J., Kasprzykowski, Z. & Horbowicz M. (2016). Profile of phenolic acids and antioxidant capacity in organs of common buckwheat sprout. Acta Alimentaria, 45, 250-257. DOI: 10.1556/066.2016.45.2.1210.1556/066.2016.45.2.12Search in Google Scholar

44. Wronkowska, M., Jeliński, T., Majkowska, A. & Zieliński, H. (2018) Physical properties of buckwheat water biscuits formulated on fermented flours by selected lactic acid bacteria. Pol. J. Food Nutr. Sci., 68, 25-31. DOI: 10.1515/pjfns-2017-002710.1515/pjfns-2017-0027Search in Google Scholar

45. Xiao, Y., Xing, G., Rui, X., Li, W., Chen, X., Jiang, M. & Dong, M. (2015). Effect of solid-state fermentation with Cordyceps militaris SN- 18 on physicochemical and functional properties of chickpea (Cicer arietinum L.) flour. LWT - Food Sci. Technol., 63, 1317-1324. DOI: 10.1016/j.lwt.2015.04.04610.1016/j.lwt.2015.04.046Search in Google Scholar

46. Yao, F., Sun, C. & Chang, S.K.C. (2012). Lentil polyphenol extract prevents angiotensin II-induced hypertension, vascular remodelling and perivascular fibrosis. Food Function, 3, 127–133.10.1039/C1FO10142K22159297Search in Google Scholar

47. Zielińska, D., Szawara-Nowak, D. & Zieliński, H. (2013). Antioxidative and anti-glycation activity of buckwheat hull tea infusion. Int. J. Food Prop., 16(1), 228-239. DOI: 10.1080/10942912.2010.55130810.1080/10942912.2010.551308Search in Google Scholar

48. Zieliński, H., Michalska, A., Amigo-Benavent, M., del Castillo, M.D. & Piskuła M.K. (2009). Changes in protein quality and antioxidant properties of buckwheat seeds and groats induced by roasting. J. Agr. Food Chem., 57, 4771-4776. DOI: 10.1021/jf900313e10.1021/jf900313e19415894Search in Google Scholar

49. Zieliński, H., Ciesarová, Z., Kukurová, K., Zielińska, D., Szawara-Nowak, D., Starowicz, M. & Wronkowska, M. (2017). Effect of fermented and unfermented buckwheat flour on functional properties of gluten-free muffins. J. Food Sci. Technol., 54(6), 1425–1432.10.1007/s13197-017-2561-4543017328559601Search in Google Scholar

50. Zieliński, H., Szawara-Nowak, D., Bączek, N. & Wronkowska, M. (2019). Effect of liquid-state fermentation on the antioxidant and functional properties of raw and roasted buckwheat flours. Food Chem., 271, 291–297. DOI: 10.1016/j.foodchem.2018.07.18210.1016/j.foodchem.2018.07.18230236680Search in Google Scholar

eISSN:
2344-150X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Industrial Chemistry, other, Food Science and Technology