Acceso abierto

Genetic diversity and relationship between wild and cultivated cowpea [Vigna unguiculata (L.) Walp.] as assessed by allozyme markers


Cite

Bennett M. D., Leitch I. J. (1995): Nuclear DNA amounts in angiosperms. Annals of Botany 76: 113 – 176.10.1006/anbo.1995.1085 Search in Google Scholar

Bi I. Z., Maquet A., Baudoin J. P. (2003): Population genetic structure of wild Phaseolus lunatus (Fabaceae), with special reference to population sizes. American Journal of Botany 90: 897 – 90410.3732/ajb.90.6.89721659184 Search in Google Scholar

Bidima I. M. (2012): Haricot niébé: L’or blanc du Sahel. La voix du Paysan – Mensuel de l’entrepreneur rural, 14 p. Search in Google Scholar

Boukar O., Belko N., Chamarthi S., Togola A., Batieno J., Owusu E., Haruna M., Diallo S., Umar M. L., Olufajo O., Fatokun, C. (2018): Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant Breeding 00: 1 – 10. doi: 10.1111/pbr.1258910.1111/pbr.12589 Search in Google Scholar

Brown A. H. D., Allard F. W. (1970): Estimation of the mating system in open-pollinated maize populations using isozyme polymorphisms. Genetics 66: 133 – 145.10.1093/genetics/66.1.133121248017248507 Search in Google Scholar

Coulibaly S., Pasquet R. S., Papa R., Gepts P. (2002): AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. reveals extensive gene flow between wild and domesticated types. Theoretical and Applied Genetics 104: 358 – 366. doi: 10.1007/s00122010074010.1007/s00122010074012582708 Search in Google Scholar

Dakora F. D., Belane A. K. (2019): Evaluation of Protein and Micronutrient Levels in Edible Cowpea (Vigna unguiculata L. Walp.) Leaves and Seeds. Frontiers in Sustainable Food Systems 3: Article 70. doi: 10.3389/fsufs.2019.0007010.3389/fsufs.2019.00070 Search in Google Scholar

Dudje I. Y., Omoigui L. O., Ekeleme F., Kamara A. Y., Ajeigbe H. (2009): Production du niébé en Afrique de l’Ouest: guide du paysan. IITA, Ibadan, Nigeria. Search in Google Scholar

Feleke Y., Pasquet R. S., Gepts P. (2006): Development of PCR-based chloroplast DNA markers that characterize domesticated cowpea (Vigna unguiculata ssp. unguiculata var. unguiculata) and highlight its crop-weed complex. Plant Systematics and Evolution 262: 75 – 87. doi: 10.1007/s00606-006-0475-010.1007/s00606-006-0475-0 Search in Google Scholar

FAOSTAT. (2016): Food and Agriculture Organization of the United Nations Statistics Division. http://faostat3.fao.org/download/Q/QC/E Search in Google Scholar

Forneck A., Walker M. A., Schreiber A., Blaich R., Schumann F. (2003): Genetic diversity in Vitis vinifera Gmelin from Europe, the Middle East and North Africa. Acta Horticulturae 603: 549 – 542. doi: 10.17660/ActaHortic.2003.603.7210.17660/ActaHortic.2003.603.72 Search in Google Scholar

Hamrick J. L., Godt M. J. (1990): Allozyme diversity in plant species. In: A. D. H. Brown, M. T. Clegg, A. L. Kahler, B. S. Weir (Eds): Plant population genetics, breeding and genetic resources (pp. 43 – 63). Sinauer, Sunderland, Massachusetts, USA Search in Google Scholar

Horn L. N., Shimelis H. (2020): Production constraints and breeding approaches for cowpea improvement for drought prone agro-ecologies in Sub-Saharan Africa. Annals of Agricultural Sciences 65: 83 – 91. https://doi.org/10.1016/j.aoas.2020.03.00210.1016/j.aoas.2020.03.002 Search in Google Scholar

John P. S., Pandey R. K., Buresh R. J., Prasad R. (1992): Nitrogen contribution of cowpea green manure and residue to upland rice. Plant and Soil 142: 53 – 61 (1992). doi: 10.1007/BF0001017410.1007/BF00010174 Search in Google Scholar

Kebede E., Bekeko Z. (2020): Expounding the production and importance of cowpea (Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food & Agriculture 6: Article 1769805. 21 pages. doi: 10.1080/23311932.2020.176980510.1080/23311932.2020.1769805 Search in Google Scholar

Keller L. F., Waller D. M. (2002): Inbreeding effects in wild populations. Trends in Ecology & Evolution 17: 230 – 241.10.1016/S0169-5347(02)02489-8 Search in Google Scholar

Kouadio D., Echikh N., Toussaint A., Pasquet R S., Baudoin J. P. (2007): Organisation du pool génique de Vigna unguiculata (L.) Walp.: croisements entre les formes sauvages et cultivées du niébé. Biotechnology, Agronomy, Society and Environment 11: 47 – 57. Search in Google Scholar

Kouam E. B., Ndomou M., Gouado I., Pasquet R. S. (2017): Assessment of the genetic diversity of cultivated common beans (Phaseolus vulgaris L.) from Cameroon and Kenya using allozymes markers. Journal of Experimental Biology and Agricultural Sciences 5: 87 – 97. doi: 10.18006/2017.5(1).087.09710.18006/2017.5(1).087.097 Search in Google Scholar

Kouam E. B., Pasquet R. S., Campagne P., Tignegre J. B., Thoen K., Gaudin R., Ouedraogo J. T., Salifu A. B., Muluvi G. M., Gepts P. (2012): Genetic structure and mating system of wild cowpea populations in West Africa. BMC Plant Biology12: Article 113. doi: 10.1186/1471-2229-12-11310.1186/1471-2229-12-113343813622827925 Search in Google Scholar

Lstiburek M., Mullin T. J., Mackay T. F. C., Huber D., Li B. (2005): Positive Assortative Mating With Family Size as a Function of Predicted Parental Breeding Values. Genetics 171: 1311 – 1320. doi: 10.1534/genetics.105.04172310.1534/genetics.105.041723145683415965252 Search in Google Scholar

Lush W. M. (1979): Floral morphology of wild and cultivated cowpeas. Economic Botany 33: 442 – 447.10.1007/BF02858340 Search in Google Scholar

Madodé Y. E., Houssou P. A., Linnemann A. R., Hounhouigan D. J., Nout M. J. R., van Boekel M. A. J. S. (2011): Preparation, consumption, and nutritional composition of West African cowpea dishes. Ecology of Food and Nutrition 50: 115 – 136. doi: 10.1080/03670244.2011.55237110.1080/03670244.2011.55237121888592 Search in Google Scholar

Manda J., Alene A. D., Tufa A. H., Abdoulaye T., Wossen T., Chikoye D., Manyong V. (2019): The poverty impacts of improved cowpea varieties in Nigeria: A counterfactual analysis. World Development 122: 261 – 271. doi: 10.1016/j.worlddev.2019.05.02710.1016/j.worlddev.2019.05.027669475131582870 Search in Google Scholar

Nei M. (1973): Analysis of Gene Diversity in Subdivided Populations. Proceedings of the National Academy of Sciences 70: 3321 – 3323. doi: 10.1073/pnas.70.12.332110.1073/pnas.70.12.33214272284519626 Search in Google Scholar

Pasquet R. S. (1996): Cultivated cowpea (Vigna unguiculata): genetic organization and domestication. In: B. Pickersgill, J. M. Lock (Eds): Advances in legume systematics: 8. Legumes of economic importance (pp. 101 – 108). Kew, Royal Botanic Gardens Search in Google Scholar

Pasquet R. S. (1999): Genetic relationships among subspecies of Vigna unguiculata (L.) Walp. based on allozyme variation. Theoretical and Applied Genetics 98: 1104 – 1119. doi: 10.1007/s00122005117410.1007/s001220051174 Search in Google Scholar

Peakall R., Smouse P. E. (2012): GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28: 2537 – 2539. doi: 10.1093/bioinformatics/bts46010.1093/bioinformatics/bts460 Search in Google Scholar

Ritland K. (2002): Extensions of models for the estimation of mating systems using n independent loci. Heredity 88: 221 – 228. doi: 10.1038/sj.hdy.680002910.1038/sj.hdy.6800029 Search in Google Scholar

Rohlf F. J. (2000): NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, version 2.1. New York Search in Google Scholar

Santalla M., Rodiño A. P., De Ron A. M. (2002): Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for the common bean. Theoretical and Applied Genetics 104: 934 – 944. doi: 10.1007/s00122-001-0844-610.1007/s00122-001-0844-6 Search in Google Scholar

Second G., Trouslot P. (1980): Electrophorèse d’enzymes de riz (Oryza sp.). – ORSTOM, Paris, No120, 88 p. Search in Google Scholar

Suvi W. T., Shimelis H., Laing M., Mathew I., Shayanowako A. I. T. (2019): Assessment of the genetic diversity and population structure of rice genotypes using SSR markers, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 70: 76 – 86. doi: 10.1080/09064710.2019.167085910.1080/09064710.2019.1670859 Search in Google Scholar

Tang S., Wei X., Jiang Y., Brar D., Khush G. (2007): Genetic Diversity Based on Allozyme Alleles of Chinese Cultivated Rice. Agricultural Sciences in China 6: 641 – 646. doi: 10.1016/s1671-2927(07)60094-710.1016/S1671-2927(07)60094-7 Search in Google Scholar

Vaillancourt R. E., Weeden N. F., Barnard J. (1993): Isozyme Diversity in the Cowpea Species Complex. Crop Science 33: 606 – 613. doi: 10.2135/cropsci1993.0011183x003300030037x10.2135/cropsci1993.0011183X003300030037x Search in Google Scholar

Villa T. C. C., Maxted N., Scholten M., Ford-Lloyd B. (2005): Defining and identifying crop landraces. Plant Genetic Resources: Characterization and Utilization 3: 373 – 384. doi: 10.1079/pgr200591.10.1079/PGR200591 Search in Google Scholar

Wendel J. F., Weeden N. F. (1989): Visualization and interpretation of plant isozymes. In D. E. Soltis, P. S. Soltis (Eds): Isozymes in plant biology (pp. 5 – 45). Chapman and Hall, London, UK10.1007/978-94-009-1840-5_2 Search in Google Scholar

Weng Y., Qin J., Eaton S., Yang Y., Ravelombola W. S., Shi A. (2019): Evaluation of Seed Protein Content in USDA Cowpea Germplasm. HortScience 54: 814 – 817. doi: 10.21273/HORTSCI13929-19.10.21273/HORTSCI13929-19 Search in Google Scholar

Wright S. (1922): Coefficients of Inbreeding and Relationship. The American Naturalist 56: 330 – 338.10.1086/279872 Search in Google Scholar

Zuluaga D. L., Lioi L., Delvento C., Pavan S., Sonnante G. (2021). Genotyping-by-Sequencing in Vigna unguiculata Landraces and Its Utility for Assessing Taxonomic Relationships. Plants10: 509. https://doi.org/10.3390/plants1003050910.3390/plants10030509800140033803432 Search in Google Scholar

eISSN:
1801-0571
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Life Sciences, Plant Science