[
AWARE, V. V. – MEHTA, A. K. – BADHE, V. T. – TIWARI, G. S. – MATHUR, S. M. 2013. Physical properties of dried arecanut fruit and kernel. In Indian Journal of Arecanut, Spices, and Medicinal Plants, vol. 15, no. 2, pp. 30–36.
]Search in Google Scholar
[
BULAN, R. – DEVIANTI – AYU, E. S. – SITORUS, A. 2020. Effects of moisture content on some engineering properties of arecanut (Areca catechu L.) fruit which are relevant to the design of processing equipment. In INMATEH – Agricultural Engineering, vol. 60, no. 1, pp. 61–70. DOI: https://doi.org/10.35633/inmateh-60-07
]Search in Google Scholar
[
FAZEL, F. – GOLMOHAMMADI, A. – SHAHGHOLI, G. – AHMADI, E. 2020. Predictions of the apple bruise volume on the basis of impact energy or maximum contact force using adaptive neuro-fuzzy inference system. In Acta Technologica Agriculturae, vol. 23, no. 3, pp. 118–125. DOI: https://doi.org/10.2478/ata-2020-0019
]Search in Google Scholar
[
HUYNH, T. T. M. – TONTHAT L. – DAO, S. V. T. 2022. A vision-based method to estimate volume and mass of fruit/vegetable: Case study of sweet potato. In International Journal of Food Properties, vol. 25, no. 1, pp. 717–732. DOI: https://doi.org/10.1080/10942912.2022.2057528
]Search in Google Scholar
[
HUYNH, T. – TRAN, L. – DAO, S. 2020. Real-time size and mass estimation of slender axi-symmetric fruit/vegetable using a single top view image. In Sensors, vol. 20, no. 18, article no. 5406. DOI: https://doi.org/10.3390/s20185406
]Search in Google Scholar
[
JANA, S. – PAREKH, R. – SARKAR, B. 2020. A de novo approach for automatic volume and mass estimation of fruits and vegetables. In Optik, vol. 200, article no. 163443. DOI: https://doi.org/10.1016/j.ijleo.2019.163443
]Search in Google Scholar
[
KALEEMULLAH, S. – GUNASEKAR, J. J. 2002. PH–Postharvest technology: Moisture-dependent physical properties of arecanut kernels. In Biosystems Engineering, vol. 82, no. 3, pp. 331–338. https://doi.org/10.1006/bioe.2002.0079
]Search in Google Scholar
[
KESHAVARZPOUR, F. – ACHAKZAI, A. K. K. 2013. Cantaloupe volume determination using image processing method. In World Engineering & Applied Sciences Journal, vol. 4, no. 2, pp. 17–22. DOI: https://doi.org/10.5829/idosi.weasj.2013.4.2.1112
]Search in Google Scholar
[
KHOJASTEHNAZHAND, M. – OMID, M. – TABATABAEEFAR, A. 2010. Determination of tangerine volume using image processing methods. In International Journal of Food Properties, vol. 13, no. 4, pp. 760–770. DOI: https://doi.org/10.1080/10942910902894062
]Search in Google Scholar
[
KHOJASTEHNAZHAND, M. – OMID M. – TABATABAEEFAR, A. 2009. Determination of orange volume and surface area using image processing technique. In International Astrophysics, vol. 23, no. 3, pp. 237–242.
]Search in Google Scholar
[
KOC, A. B. 2007. Determination of watermelon volume using ellipsoid approximation and image processing. In Postharvest Biology and Technology, vol. 45, no. 3, pp. 366–371. DOI: https://doi.org/10.1016/j.postharvbio.2007.03.010
]Search in Google Scholar
[
LEE, D. H. – CHO, Y. – CHOI, J. M. 2017. Strawberry volume estimation using smartphone image processing. In Horticultural Science and Technology, vol. 35, no. 6, pp. 707–716. DOI: https://doi:org/10.12972/kjhst.20170075
]Search in Google Scholar
[
MEYER, A. C. – EIFERT, J. – WANG, H. – SANGLAY, G. 2018. Volume estimation of strawberries, mushrooms, and tomatoes with a machine vision system. In International Journal of Food Properties, vol. 21, no. 1, pp. 1867–1874. DOI: https://doi.org/10.1080/10942912.2018.1508156
]Search in Google Scholar
[
NYALALA, I. – OKINDA, C. – NYALALA, L. – MAKANGE, N. – CHAO, Q. – CHAO, L. – YOUSAF, K. – CHEN, K. 2019. Tomato volume and mass estimation using computer vision and machine learning algorithms: Cherry tomato model. In Journal of Food Engineering, vol. 263, pp. 288–298. DOI: https://doi.org/10.1016/j.jfoodeng.2019.07.012
]Search in Google Scholar
[
OMID, M. – KHOJASTEHNAZHAND, M. – TABATABAEEFAR, A. 2010. Estimating volume and mass of citrus fruits by image processing technique. In Journal of Food Engineering, vol. 100, no. 2, pp. 315–321. DOI: https://doi.org/10.1016/j.jfoodeng.2010.04.015
]Search in Google Scholar
[
RASHIDI, M. – GHOLAMI, M. 2008. Determination of kiwifruit volume using ellipsoid approximation and image-processing methods. In International Journal of Agriculture & Biology, vol. 10, no. 4, pp. 375–380.
]Search in Google Scholar
[
RASHIDI, M. – GHOLAMI, M. – ABBASSI, S. 2009. Cantaloupe volume determination through image processing. In Journal of Agricultural Science and Technology, vol. 11, pp. 623–631.
]Search in Google Scholar
[
SAADATI, N. – POURDARBANI, R. – SABZI, S. – HERNANDEZ-HERNANDEZ, J. L. 2024. Identification of armyworm-infected leaves in corn by image processing and deep learning. In Acta Technologica Agriculturae, vol. 27, no. 2, pp. 92–100. DOI: https://doi.org/10.2478/ata-2024-0013
]Search in Google Scholar
[
SABLIOV, C. M – BOLDOR, D. – KEENER, K. M. – FARKAS, B. E. 2002. Image processing method to determine surface area and volume of axi-symmetric agricultural products. In International Journal of Food Products, vol. 5, no. 3, pp. 641–653. DOI: https://doi.org/10.1081/JFP-120015498
]Search in Google Scholar
[
SISWANTORO, J. – PRABUWONO, A. S. – ABDULLAH, A. 2014. Volume measurement algorithm for food product with irregular shape using computer vision based on Monte Carlo method. In Journal of ICT Research & Applications, vol. 8, no. 1. pp. 1–17. DOI: https://doi.org/10.5614/itbj.ict.res.appl.2014.8.1.1
]Search in Google Scholar
[
SRIDHAR, B. S. 2015. Development of an arecanut (Areca catechu L.) cracker. In International Journal of Applied and Pure Science and Agriculture, vol. 1, no 8, pp. 81–85.
]Search in Google Scholar
[
SALUNKE, A. – HONNUNGAR, S. 2020. Quality grading of areca nuts harvested and processed in Goa using image processing and lab view. In AIP Conference Proceedings, vol. 2247, article no. 020017. DOI: https://doi.org/10.1063/5.0004022
]Search in Google Scholar
[
SALUNKE, A. – HONNUNGAR, S. 2022. A review of unboiled arecanut drying process and its correlation with mechanical properties. In Materials Today Proceedings, vol. 56, part 5, pp. 2888–2892. DOI: https://doi.org/10.1016/j.matpr.2021.10.186
]Search in Google Scholar
[
WILHELM, L. R. – SUTER, D. A. – BRUSEWITZ, G. H. 2004. Chapter 2. Physical properties of food materials. In Food and Process Engineering Technology. Michigan, USA : American Society of Agricultural and Biological Engineers, pp. 23–52. DOI: https://doi.org/10.13031/2013.17550
]Search in Google Scholar
[
YEH, Y.-H. F. – LAI, T.-C. – LIU, T.-Y. – LIU, C.-C. – CHUNG, W.-C. – LIN, T.-T. 2014. An automated growth measurement system for leafy vegetables. In Biosystems Engineering, vol. 117, pp 43–50. DOI: https://doi.org/10.1016/j.biosystemseng.2013.08.011
]Search in Google Scholar