Acceso abierto

Modelling of Impulse Functions of Ultrasonic Sensors When Tilt Angle of Reflecting Surface is Changed


Cite

FIKAR, M. – MIKLEŠ, J. 1999. Identification of Systems. Bratislava : STU, 114 pp. ISBN 8022711772 (In Slovak: Identifikácia systémov) Search in Google Scholar

HRUBÝ, D. – VACHO, L. – KUBÍK, Ľ. – TÓTH, L. – BALÁŽI, J. – KÓSA, P. – KIŠEV, M. 2022. Characteristics of distance errors of infrared sensor relation to colour surfaces. In Acta Technologica Agriculturae, vol. 25, no. 1, pp. 40–46. DOI: https://doi.org/10.2478/ata-2022-0007 Search in Google Scholar

ISHIKARA, M. – SHIINA, M. – SUZUKI, S. 2009. Evaluation of method of measuring distance between object and walls using ultrasonic sensors. In Journal of Asian Electric Vehicles, vol. 7, no. 1, pp. 1207–1211. DOI: https://doi.org/10.4130/jaev.7.1207 Search in Google Scholar

KEYSIGHT. 2021. Keysight U2300A Series USB Multifunction Data Acquisition Devices. Malaysia : Keysight Technologies, 84 pp. Search in Google Scholar

KUC, R. – SIEGEL, M. 1987. Physically based simulation model for acoustic sensor robot navigation. In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 9, no. 6, pp. 766–778. DOI: https://doi.org/10.1109/TPAMI.1987.4767983 Search in Google Scholar

LENDELOVÁ, J. – CVIKLOVIČ, V. – OLEJÁR, M. – POGRAN, Š. 2017. Animal Position Identification Logging System. Slovak patent no. 288467 (In Slovak: Záznamový systém polohovej identifikácie zvierat) Search in Google Scholar

LIM, J. H. – LEONARD, J. J. 2000. Mobile robot relocation from echolocation constraints. In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 9, pp. 1035–1041. DOI: https://doi.org/10.1109/34.877524 Search in Google Scholar

LU, Z. 2014. Estimating time-of-flight of multi-superimposed ultrasonic echo signal through envelope. In 2014 International Conference on Computational Intelligence and Communication Networks. Bhopal : IEEE, pp. 300–303. DOI: https://doi.org/10.1109/CICN.2014.74 Search in Google Scholar

MARTÍNEZ, M. – BENET, G. – BLANES, F. – PÉREZ, P. – SIMÓ, J. E. 2003. Using the amplitude of ultrasonic echoes to classify detected objects in a scene. In ICAR 2003 : Proceedings of the 11th International Conference on Advanced Robotics. Coimbra : University of Coimbra. ISBN 9789729688997 Search in Google Scholar

MARTÍNEZ, M. – BENET, G. – BLANES, F. – SIMÓ, J. E. – PÉREZ, P. – POZA, J. L. 2004. Wall/corner classification. A new ultrasonic amplitude-based approach. In IFAC Proceedings Volumes, vol. 37, no. 8, pp. 663–668. DOI: https://doi.org/10.1016/S1474-6670(17)32054-2 Search in Google Scholar

MICROCHIP TECHNOLOGY. 2014. TC4426/TC4427/TC4428. Datasheet. 28 pp. Available at: https://ww1.microchip.com/downloads/en/DeviceDoc/20001422G.pdf Search in Google Scholar

MOREIRA, T. F. M. – LIMA, J. – COSTA, P. – CUNHA, M. 2020. Low Cost Binaural System Based on the Echolocation. In Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics – Volume 1: ICINCO. Setúbal : SciTePress, pp. 818–825. ISBN 9783030361495 Search in Google Scholar

PARE, A. – ZHANG, S. – LEI, Z. 2020. Multipath interference suppression in time-of-flight sensors by exploiting the amplitude envelope of the transmission signal. In IEEE Access, vol. 8, pp. 167527–167536. DOI: https://doi.org/10.1109/ACCESS.2020.3023083 Search in Google Scholar

PRO-WAWE. 2005. 400ST/R160. Air Ultrasonic Ceramic Transducers. Available at: http://www.prowave.com.tw/index.htm Search in Google Scholar

QIU, Z. – LU, Y. – QIU, Z. 2022. Review of ultrasonic ranging methods and their current challenges. In Micromachines, vol. 13, no. 4, article no. 520. DOI: https://doi.org/10.3390/mi13040520 Search in Google Scholar

RABADAN, J. – GUERRA, V. – RODRÍGUEZ, R. – RUFO, J. – LUNA-RIVERA, M. – PEREZ-JIMENEZ, R. 2017. Hybrid visible light and ultrasound-based sensor for distance estimation. In Sensors, vol. 17, no. 2, article no. 330. DOI: https://doi.org/10.3390/s17020330 Search in Google Scholar

SHIN, S. – KIM, M.-H. – CHOI, S. B. 2019. Ultrasonic distance measurement method with crosstalk rejection at high measurement rate. In IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 4, pp. 972–979. DOI: https://doi.org/10.1109/TIM.2018.2863999 Search in Google Scholar

SMITH, S. W. 1999. The Scientist and Engineer‘s Guide to Digital Signal Processing. San Diego : California Technical Publishing, 650 pp. ISBN 0966017668 Search in Google Scholar

UREÑA, J. – MAZO, M. – GARCÍA, J. J. – HERNÁNDEZ, Á. – BUENO, E. 1999. Classification of reflectors with an ultrasonic sensor for mobile robot applications. In Robotics and Autonomous Systems, vol. 29, no. 4, pp. 269–279. DOI: https://doi.org/10.1016/S0921-8890(99)00059-7 Search in Google Scholar

WEBSTER, J. G. – EREN, H. 2014. Measurement, Instrumentation and Sensors Handbook. New York : CRC Press, 1600 pp. ISBN 9781439848883 Search in Google Scholar

XU, B. – YU, L. – GIURGIUTIU, V. 2009. Advanced methods for time-of-flight estimation with application to lamb wave structural health monitoring. In Structural Health Monitoring 2009: Proceedings of the Seventh International Workshop on Structural Health Monitoring (2 Volume Set). Lancaster : DEStech Publications, Inc., pp. 1202–1209. ISBN 9781605950075 Search in Google Scholar

YATA, T. – OHYA, A. – YUTA, S. 2000. Use of amplitude of echo for environment recognition by mobile robots. In Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems. Takamatsu : IEEE, pp. 1298–1303. ISBN 0-7803-6348-5 DOI: https://doi.org/10.1109/IROS.2000.893198 Search in Google Scholar

eISSN:
1338-5267
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other