Acceso abierto

Optimized Mathematical Model of a Grain Cleaning System Functioning in a Combine Harvester using Response Surface Methodology


Cite

BADRETDINOV, I. – MUDARISOV, S. – LUKMANOV, R. – PERMYAKOV, V. – IBRAGIMOV, R. – NASYROV, R. 2019. Mathematical modeling and research of the work of the grain combine harvester cleaning system. In Computers and Electronics in Agriculture, vol. 165, article no. 104966.10.1016/j.compag.2019.104966 Search in Google Scholar

BENASEER, S. – MASILAMANI, P. – ALEX ALBERT, V. – GOVINDARAJ, M. – SELVARAJU, P. – BHASKARAN, M. 2018. Impact of harvesting and threshing methods on seed quality. In Agricultural Reviews, vol. 39, no. 3, pp. 183–192. Search in Google Scholar

CRAESSAERTS, C. – SAEYS, W. – MISSOTEN, B. – DE BAERDEMAEKER, J. 2007a. A genetic input selection methodology for identification of the cleaning process on a combine harvester, Part I: Selection of relevant input variables for identification of the sieve losses. In Biosystem Engineering, vol. 98, pp. 166–175.10.1016/j.biosystemseng.2007.07.008 Search in Google Scholar

CRAESSAERTS, C. – SAEYS, W. – MISSOTTERN, B. – DE BAERDEMAEKER, J. 2007b. A genetic input selection methodology for identification of the cleaning process on a combine harvester, Part II: Selection of relevant input variables for identification of material other than grain (MOG) content in the grain bin. In Biosystem Engineering, vol. 98, pp. 297–303.10.1016/j.biosystemseng.2007.07.002 Search in Google Scholar

CRAESSAERTS, C. – SAEYS, W. – MISSOTERN, B. – DE BAERDEMAEKER, J. 2008. Identification of the cleaning process on combine harvesters. Part I: A fuzzy model for prediction of the material other than grain (MOG) content in the grain bin. In Biosystem Engineering, vol. 101, pp. 42–49.10.1016/j.biosystemseng.2008.05.016 Search in Google Scholar

CRAESSAERTS, C. – SAEYS, W. – MISSOTERN, B. – DE BAERDEMAEKER, J. 2010. Identification of the cleaning process on combine harvesters, Part II: A fuzzy model for prediction of the sieve losses. In Biosystem Engineering, vol. 106, pp. 97–102.10.1016/j.biosystemseng.2009.11.009 Search in Google Scholar

GOLPOUR, I. – KAVEH, M. – CHAYJAN, A. R. – GUINÉ, R. P. F. 2020. Optimization of infrared-convective drying of white mulberry fruit using Response Surface Methodology and development of a predictive model through Artificial Neural Network. In International Journal of Fruit Science, vol. 20, no. sup2, pp. S1015–S1035.10.1080/15538362.2020.1774474 Search in Google Scholar

HUNT, D. 2001. Farm power and machinery management. 10th ed. Ames : Iowa State University Press, 368 pp. ISBN 0813817560. Search in Google Scholar

KUTZBACH, H. D. 2003. Approaches for mathematical modelling of grain separation. In Proceedings of the International Conference on Crop Harvesting and Processing. ASABE Paper no. 701P1103e. Search in Google Scholar

LIANG, Z. W. – LI, Y. M. – XU, L. Z. – ZHAO, Z. 2016. Sensor for monitoring rice grain sieve losses in combine harvesters. In Biosystems Engineering, vol. 147, pp. 51–66.10.1016/j.biosystemseng.2016.03.008 Search in Google Scholar

MESRI, T. G. – ARDABILI, S. – MOSAVI, A. – ANNAMARIA, R. – VARKONYI, K. 2019. Prediction of Combine Harvester Performance Using Hybrid Machine Learning Modeling and Response Surface Methodology. In Preprints 2019, International Conference on Global Research and Education, article no. 2019080202. Search in Google Scholar

MIRZAZADEH, A. – ABDOLLAHPOUR, S. H. – KOLAHI, E. 2021. Proposing the mathematical model of combine harvester rear losses in soybean harvesting. In Journal of Agricultural Mechanization, vol. 5, no. 2, pp. 21–28. Search in Google Scholar

MIRZAZADEH, A. – ABDOLLAHPOUR, S. H. – MOGHADDAM, V. M. 2015. Incorporating skewness and kurtosis in improvement of combine harvester cleaning system performance. In International Journal of Agriculture Innovations and Research, vol. 3, no. 5, pp. 2319–1473. Search in Google Scholar

MIRZAZADEH, A. – ABDOLLAHPOUR, S. H. – MOGHADDAM, V. M. 2011. Effects of operating parameters on threshing efficiency control the amount of threshing loss. In Journal of Sustainable Agriculture and Production Science, vol. 21.2, no. 1, pp. 57–67. Search in Google Scholar

MIU, P. I. – KUTZBACH, H. D. 2008. Modeling and simulation of grain threshing and separation in threshing unites, Part I. In Journal of Computer and Electronics in Agriculture, vol. 60, pp. 96–104.10.1016/j.compag.2007.07.003 Search in Google Scholar

MOKHTOR, S. A. – EL PEBRIAN, D. – JOHARI, N. A. A. 2020. Actual field speed of rice combine harvester and its influence on grain loss in Malaysian paddy field. In Journal of the Saudi Society of Agricultural Sciences, vol. 19, no. 6, pp. 422–425.10.1016/j.jssas.2020.07.002 Search in Google Scholar

MYHAN, R. – JACHIMCZYK, E. 2016. Grain separation in a straw walker unit of a combine harvester: Process model. In Biosystems Engineering, vol. 145, pp. 93–107.10.1016/j.biosystemseng.2016.03.003 Search in Google Scholar

OLAWALE, O. – AKINYEMI, B. A. – ATTABO, F. 2020. Optimization of the mixing ratio for particleboard production from groundnut shell and rice husk. In Acta Technologica Agriculturae, vol. 23, no. 4, pp. 168–175.10.2478/ata-2020-0027 Search in Google Scholar

ŠOTNAR, M. – POSPÍŠIL, J. – MAREČEK, J. – DOKUKILOVÁ, T. – NOVOTNÝ, V. 2018. Influence of the combine harvester parameter settings on harvest losses. In Acta Technologica Agriculturae, vol. 21, no. 3, pp. 105–108.10.2478/ata-2018-0019 Search in Google Scholar

SRIVASTAVA, A. K. – GOERING, C. E. – ROHRBACH, R. P. – BUCKMASTER, D. R. 2006. Engineering principles of agricultural machines. 2nd ed. St. Joseph, Michigan : ASABE publications, 553 pp. ISBN 9781892769503. Search in Google Scholar

VALIZADEH, M. – MOGHADDAM, M. V. 2011. Experimental Designs in Agriculture. 5th ed. Tabriz : Parivar Press. ISBN 9789645714855. Search in Google Scholar

VOICU, G. – CASANDROIU, T. – STAN, G. 2007. Using the dimensional analysis for a mathematical model to prediction the seeds losses at the cleaning system of the cereals harvesting combines. In Scientific Bulletin, Series D, vol. 69, no. 4, pp. 29–39. Search in Google Scholar

WALLAYS, C. – MISSOTTEN, B. – BAERDEMAEKER, J. D. – SAEYS, W. 2009. Hyperspectral waveband selection for on-line measurement of grain cleanness. In Biosystem Engineering, vol. 104, no. 1, pp. 1–7.10.1016/j.biosystemseng.2009.05.011 Search in Google Scholar

eISSN:
1338-5267
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other