Acceso abierto

Distributed Activation Energy Modelling Using a Parabolic Heating Profile


Cite

ANTHONY, D. B. – HOWARD, J. B. – MEISSNER, H. P. 1976. Coal devolatilization and hydrogastification. In AIChE Journal, vol. 22, no. 4, 625–656. Search in Google Scholar

CAI, J. M. – LIU, R. H. 2007. Parametric study of the nonisothermal nth-order distributed activation energy model involved the Weibull distribution for biomass pyrolysis. In Journal of Thermal Analysis and Calorimetry, vol. 89, no. 3, pp. 971–975. Search in Google Scholar

DHAUNDIYAL, A. – GUPTA, V. K. 2014. The analysis of pine needles as a substrate for gasification. In Hydro Nepal: Journal of Water, Energy, and Environment, vol. 15, 73–81. Search in Google Scholar

DHAUNDIYAL, A. – SINGH, S. B. – HANON, M. M. 2018. Study of distributed activation energy model using bivariate distribution function, f (E1, E2). In Thermal Science and Engineering Progress, vol. 5, pp. 388–404. Search in Google Scholar

DHAUNDIYAL, A. – SINGH, S. B. 2017. Parametric study of nth order distributed activation energy model for isothermal pyrolysis of forest waste using Gaussian distribution. In Acta Technologica Agriculturae, vol. 20, no. 1, pp. 23–28. Search in Google Scholar

DHAUNDIYAL, A. – TEWARI, P. 2017. Kinetic parameters for the thermal decomposition of forest waste using distributed activation energy model (DAEM). In Environmental and Climate Technologies, vol. 19, pp. 15–32. Search in Google Scholar

DHAUNDIYAL, A. – TEWARI, P. C. 2015. Comparative analysis of pine needles and coal for electricity generation using carbon taxation and emission reductions. In Acta Technologica Agriculturae, vol. 18, no. 2, pp. 29–35. Search in Google Scholar

DHAUNDIYAL, A. – TOTH, L. 2020. Modeling of hardwood pyrolysis using the convex combination of the mass conversion points. In Journal of Energy Resources Technology, Transactions of the ASME, vol. 142, no. 6, pp. 1–10. Search in Google Scholar

DHAUNDIYAL, A. – TOTH, L. – BACSKAI, I. – ATSU, D. 2020.Analysis of pyrolysis reactor for hardwood (Acacia) chips. In Renewable Energy, vol. 147, pp. 1979–1989. Search in Google Scholar

DI BLASI, C. 2008. Modeling chemical and physical processes of wood and biomass pyrolysis. In Progress in Energy and Combustion Science, vol. 34, pp. 47–90. Search in Google Scholar

DING, Y. – EZEKOYE, O. A. – LU, S. – WANG, C. – ZHOU, R. 2017. Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood. In Energy Conversion and Management, vol. 132, pp. 102–109. Search in Google Scholar

MIURA, K. 1995. A new and simple method to estimate f(E) and ko(E) in the distributed activation energy model from three sets of experimental data. In Energy and Fuels, vol. 9, pp. 302–307. Search in Google Scholar

LEE, Y. L. – AHMED, O. H. – WAHID, S. A. – AB AZIZ, Z. F. 2019. Characterization of tablets made from mixture of charred agricultural residues with and without embedded fertilizer. In Acta Technologica Agriculturae, vol. 22, no. 3, pp. 70–74. Search in Google Scholar

TINNEY, E. R. 1965. The combustion of wooden dowels in heated air. In Tenth Symposium (International) on Combustion. Combustion Institute, pp. 925–930. Search in Google Scholar

WHITE, J. E. – CATALLO, W. J. – LEGENDRE, B. L. 2011. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. In Journal of Analytical and Applied Pyrolysis, vol. 91, pp. 1–33. Search in Google Scholar

XU, J. –ZUO, H. – WANG, G. – ZHANG, K. – GUO, K. – LIANG, W. 2019. Gasification mechanism and kinetics analysis of coke using distributed activation energy model (DAEM). In Applied Thermal Engineering, vol. 152, pp. 605–614. Search in Google Scholar

eISSN:
1338-5267
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other