Acceso abierto

Potential health benefits of the plant Levisticum officinale (lovage) in relation to its polyphenolic content


Cite

[1]. Kemzuraite, A.; Venskutonis, P.R.; Baranauskiene, R.; Navikiene, D., Optimization of supercritical CO2 extraction of different anatomical parts of lovage (Levisticum officinale Koch.) using response surface methodology and evaluation of extracts composition, Journal of Supercritical Fluids, 2014, 87, 93-103. Search in Google Scholar

[2]. Khodashenas, M.; Keramat, B.; Emamipoor, Y., Germination response of endangered medicinal plant, Levisticum officinale, to stratification and some plant growth regulators, Journal of Biodiversity and Environmental Science, 2015, 7(3), 228-235. Search in Google Scholar

[3]. Ivancheva, S.; Stantcheva, B., Ethnobotanical inventory of medicinal plants in Bulgaria, Journal of Ethnopharmacology, 2000, 69(2), 165-172. Search in Google Scholar

[4] El-Din, A.A.E.; Hendawy, S.F., Comparative efficiency of organic and chemical fertilizers on herb production and essential oil of lovage plants grown in Egypt, American-Eurasian Journal of Agricultural and Environmental Sciences, 2010, 8, 60-66. Search in Google Scholar

[5]. Sprea, R.M.; Fernandes, A.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R., Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: a comprehensive study, Food and Function, 2020, 11, 1292-1303. Search in Google Scholar

[6]. Dobrinas, S.; Stanciu, G.; Lupsor, S., Total phenolic content and HPLC characterization of some culinary herbs, Journal of Science and Arts, 2017, 2, 321-330. Search in Google Scholar

[7]. Nour, V.; Trandafir, I.; Cosmulescu, S., Bioactive compounds, antioxidant activity and nutritional quality of different culinary aromatic herbs, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 45(1), 179-184. Search in Google Scholar

[8]. Justesen, U.; Knuthsen, P., Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes, Food Chemistry, 2001, 73(2), 245-250. Search in Google Scholar

[9]. Zlotek, U.; Szymanowska, U.; Pecio, L.; Kozachok, S.; Jakubczyk, A., Antioxidative and potentially anti-inflammatory activity of phenolics from lovage leaves Levisticum officinale Koch elicited with jasmonic acid and yeast extract, Molecules, 2019, 24(7), 1441. Search in Google Scholar

[10]. Szabo, M.R.; Radu, D.; Gavrilas, S.; Chambre, D.; Iditoiu, C., Antioxidant and antimicrobial properties of selected spice extracts, International Journal of Food Properties, 2010, 13(3), 535-545. Search in Google Scholar

[11]. Catunescu, G.M.; Rotar, I.; Vidican, R.; Rotar, A.M., Effect of cold storage on antioxidants from minimally processed herbs, Scientific Bulletin (Series F, Biotechnologies), 2017, 21, 121-126. Search in Google Scholar

[12]. Papuc, C.; Predescu, N.C.; Goran, G.; Petrescu, C., Total phenolic content and antioxidant activity of some aromatic herbs used in traditional Romanian cuisine, Annals of the Academy of Romanian Scientists Series on Agriculture, Silviculture and Veterinary Medicine Sciences, 2020, 9(1), 17-24. Search in Google Scholar

[13]. Slowianek, M.; Leszczynska, J., Antioxidant properties of selected culinary spices, Herba Polonica 2016, 62(1), 29-41. Search in Google Scholar

[14]. Tajner-Czopek, A.; Gertchen, M.; Rytel, E.; Kita, A.; Kucharska, A.Z.; Sokol-Letowska, A., Study of antioxidant activity of some medicinal plants having high content of caffeic acid derivatives, Antioxidants, 2020, 9(5), 412. Search in Google Scholar

[15]. Mohamadi, N.; Rajaei, P.; Moradalizadeh, M.; Amiri, M.S., Essential oil composition and antioxidant activity of Levisticum officinale Koch. at various phenological stages, Journal of Medicinal Plants, 2017, 16(61), 45-55. Search in Google Scholar

[16]. Vellosa, J.C.R.; Regasini, L.O.; Khalil, N.M.; Bolzani, V.S.; Khalil, O.A.K.; Manente, F.A.; Netto, H.P.; de Faria Oliveira, O.M.M., Antioxidant and cytotoxic studies for kaempferol, quercetin and isoquercitrin, Eclética Química, 2011, 36(2), 7-20. Search in Google Scholar

[17]. Yang, J.; Guo, J.; Yuan, J., In vitro antioxidant properties of rutin, LWT - Food Science and Technology, 2008, 41(6), 1060-1066. Search in Google Scholar

[18]. Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, E.; Rodríguez, J.A.; Galán-Vidal, C.A., Chemical studies of anthocyanins: A review, Food Chemistry, 2009, 113(4), 859-871. Search in Google Scholar

[19]. Saibabu, V.; Fatima, Z.; Khan, L.A.; Hameed, S., Therapeutic potential of dietary phenolic acids, Advances in Pharmacological and Pharmaceutical Sciences, 2015, 823539. Search in Google Scholar

[20]. Ferk, F.; Chakraborty, A.; Jäger, W.; Kundi, M.; Bichler, J.; Mišík, M.; Wagner, K.H.; Grasl-Kraupp, B.; Sagmeister, S.; Haidinger, G.; Hoelzl, C.; Nersesyan, A.; Dušinská, M.; Simić, T.; Knasmüller, S., Potent protection of gallic acid against DNA oxidation: Results of human and animal experiments, Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 715(1-2), 61-71. Search in Google Scholar

[21]. Jakubczyk, A.; Złotek, U.; Szymanowska, U.; Rybczyńska-Tkaczyk, K.; Jęderka, K.; Lewick, S., In vitro antioxidant, anti-inflammatory, anti-metabolic syndrome, antimicrobial, and anticancer effect of phenolic acids isolated from fresh lovage leaves [Levisticum officinale Koch] elicited with jasmonic acid and yeast extract, Antioxidants, 2020, 9(6), 554. Search in Google Scholar

[22]. Carullo, G.; Cappello, A.R.; Frattaruolo, L.; Badolato, M.; Armentano, B.; Aiello, F., Quercetin and derivatives: useful tools in inflammation and pain management. Future Medicinal Chemistry, 2017, 9(1), 79-93. Search in Google Scholar

[23]. Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y., Quercetin, inflammation and immunity, Nutrients, 2016, 8(3), 167. Search in Google Scholar

[24]. Devi, K.P.; Malar, D.S.; Nabavi, S.F.; Sureda, A.; Xiao, J.; Nabavi, S.M.; Daglia, M., Kaempferol and inflammation: From chemistry to medicine, Pharmacological Research, 2015, 99, 1-10. Search in Google Scholar

[25]. Jabbari, S.; Bananej, M.; Zarei, M.; Komaki, A.; Hajikhani, R., Effects of intrathecal and intracerebroventricular microinjection of kaempferol on pain: possible mechanisms of action, Research in Pharmaceutical Sciences, 2021, 16(2), 203-216. Search in Google Scholar

[26]. Selloum, L.; Bouriche, H.; Tigrine, C.; Boudoukh, C., Anti-inflammatory effect of rutin on rat paw oedema, and on neutrophils chemotaxis and degranulation, Experimental and Toxicologic Pathology, 2003, 54(4), 313-318. Search in Google Scholar

[27]. Hernandez-Leon, A.; Fernández-Guasti, A.; González-Trujano, M.E., Rutin antinociception involves opioidergic mechanism and descending modulation of ventrolateral periaqueductal grey matter in rats. European Journal of Pain, 2016, 20(2),274-283. Search in Google Scholar

[28]. Fallah, A.A.; Sarmast, E.; Fatehi, P.; Jafari, T., Impact of dietary anthocyanins on systemic and vascular inflammation: Systematic review and meta-analysis on randomised clinical trials. Food and Chemical Toxicology, 2020, 135, 110922. Search in Google Scholar

[29]. Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; Fang Fang, X.; Modarresi-Ghazani, F.; WenHua, L.; XiaoHui, Z., Chlorogenic acid (CGA): A pharmacological review and call for further research, Biomedicine and Pharmacotherapy, 2018, 97, 67-74. Search in Google Scholar

[30]. Nile, S.H.; Ko, E.Y.; Kim, D.H.; Keum, Y.S., Screening of ferulic acid related compounds as inhibitors of xanthine oxidase and cyclooxygenase-2 with anti-inflammatory activity, Revista Brasileira de Farmacognosia, 2016, 26, 50-55. Search in Google Scholar

[31]. Rahimi, V.B.; Ghadiri, M.; Ramezani, M.; Askari, V.R., Antiinflammatory and anti-cancer activities of pomegranate and its constituent, ellagic acid: Evidence from cellular, animal, and clinical studies, Phytotherapy Research, 2020, 34(4), 685-720. Search in Google Scholar

[32]. Bagdas, D.; Gul, Z.; Meade, J.A.; Cam, B.; Cinkilic, N.; Gurun, M.S., Pharmacologic overview of chlorogenic acid and its metabolites in chronic pain and inflammation, Current Neuropharmacology, 2020, 18(3), 216-228. Search in Google Scholar

[33]. Xu, Y.; Lin, D.; Yu, X.; Xie, X.; Wang, L.; Lian, L.; Fei, N.; Chen, J.; Zhu, N.; Wang, G.; Huang, X.; Pan, J., The antinociceptive effects of ferulic acid on neuropathic pain: involvement of descending monoaminergic system and opioid receptors, Oncotarget, 2016, 7(15), 20455-20468. Search in Google Scholar

[34]. Kaur, S.; Muthuraman, A., Ameliorative effect of gallic acid in paclitaxel-induced neuropathic pain in mice, Toxicology Reports, 2019, 6, 505-513. Search in Google Scholar

[35]. Mansouri, M.T.; Naghizadeh, B.; Ghorbanzadeh, B.; Farbood, Y., Central and peripheral antinociceptive effects of ellagic acid in different animal models of pain, European Journal of Pharmacology, 2013, 707(1-3), 46-53. Search in Google Scholar

[36]. Sargazi, M.L.; Saravani, R.; Shahraki, A., Hydroalcoholic extract of Levisticum officinale increases cGMP signaling pathway by down-regulating PDE5 expression and induction of apoptosis in MCF-7 and MDA-MB-468 breast cancer cell lines, Iranian Biomedical Journal, 2019, 23(4), 280-286. Search in Google Scholar

[37]. Sargazi, S.; Saravani, R.; Galavi, H.R.; Mollashahee-Kohkan, F., Effect of Levisticum officinale hydroalcoholic extract on DU-145 and PC-3 prostate cancer cell lines, Gene, Cell and Tissue, 2017, 4(4), e66094. Search in Google Scholar

[38]. Mollashahee-Kohkan, F.; Saravani, R.; Khalili, T.; Galavi, H.; Sargazi, S., Levisticum officinale extract triggers apoptosis and down-regulates ZNF703 gene expression in breast cancer cell lines, Reports of Biochemistry and Molecular Biology, 2019, 8(2), 119-125. Search in Google Scholar

[39]. Bogucka-Kocka, A.; Smolarz, H.D.; Kocki, J., Apoptotic activities of ethanol extracts from some Apiaceae on human leukaemia cell lines, Fitoterapia, 2008, 79(7-8), 487-497. Search in Google Scholar

[40]. Sertel, S.; Eichhorn, T.; Plinkert, P.K.; Efferth, T., Chemical composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Levisticum officinale, against UMSCC1 head and neck squamous carcinoma cells, Anticancer Research, 2011, 31(1), 185-191. Search in Google Scholar

[41]. Rauf, A.; Imran, M.; Khan, I.A.; ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S., Anticancer potential of quercetin: A comprehensive review, Phytotherapy Research, 2018, 32(11), 2109-2130. Search in Google Scholar

[42]. Imran, M.; Salehi, B.; Sharifi-Rad, J.; Gondal, T.A.; Saeed, F.; Imran, A.; Shahbaz, M.; Fokou, P.V.T.; Arshad, M.U.; Khan, H.; Guerreiro, S.G.; Martins, N.; Estevinho, L.M., Kaempferol: A key emphasis to its anticancer potential, Molecules, 2019, 24(12), 2277. Search in Google Scholar

[43]. Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Punia, S.; Mukherjeec, T.K., Kaempferol – A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements, Journal of Functional Foods, 2017, 30, 203-219. Search in Google Scholar

[44]. Imani, A.; Maleki, N.; Bohlouli, S.; Kouhsoltani, M.; Sharifi, S.; Dizaj, S.M., Molecular mechanisms of anticancer effect of rutin, Phytotherapy Research, 2021, 35(5), 2500-2513. Search in Google Scholar

[45]. Li, D.; Wang, P.; Luo, Y.; Zhao, M.; Chen, F., Health benefits of anthocyanins and molecular mechanisms: Update from recent decade, Critical Reviews in Food Science and Nutrition, 2017, 57(8), 1729-1741. Search in Google Scholar

[46]. Rocha, L.D.; Monteiro, M.C.; Teodoro, A.J., Anticancer properties of hydroxycinnamic acids - A review, Cancer and Clinical Oncology, 2012, 1(2), 109-121. Search in Google Scholar

[47]. Hayakawa, S.; Ohishi, T.; Miyoshi, N.; Oishi, Y.; Nakamura, Y.; Isemura, M., Anti-cancer effects of green tea epigallocatchin-3-gallate and coffee chlorogenic acid, Molecules, 2020, 25(19), 4553. Search in Google Scholar

[48]. Huang, S.; Wang, L.L.; Xue, N.N.; Li, C.; Guo, H.H.; Ren, T.K.; Zhan, Y.; Li, W.B.; Zhang, J.; Chen, X.G.; Han, Y.X.; Zhang, J.L.; Jiang, J.D., Chlorogenic acid effectively treats cancers through induction of cancer cell differentiation, Theranostics, 2019, 9(23), 6745-6763. Search in Google Scholar

[49]. Gholamhoseinian, A.; Moradi, M.N.; Sharifi-far, F., Screening the methanol extracts of some Iranian plants for acetylcholinesterase inhibitory activity, Research in Pharmaceutical Sciences, 2009, 4(2), 105-112. Search in Google Scholar

[50]. Zarei, S.; Mohammadi, P.; Bakhtiari, A.; Moridi, H.; Janmohammadi, E.; Kaki, A.; Gholamhoseinian, A.; Sharifi-far, F.; Hatami, M.; Hosseini-Zijoud, S.M.; Moradi, M.N., Identification of anticholinesterase compounds from Berberis integerrima, Rheum ribes and Levisticum officinale, Annals of Biological Research, 2013, 4(12), 138-142. Search in Google Scholar

[51]. Raafat, K., Identification of phytochemicals from North African plants for treating Alzheimer’s diseases and of their molecular targets by in silico network pharmacology approach, Journal of Traditional and Complementary Medicine, 2021, 11(3), 268-278. Search in Google Scholar

[52]. Amraie, E.; Pouraboli, I.; Rajaei, Z., Neuroprotective effects of Levisticum officinale on LPS-induced spatial learning and memory impairments through neurotrophic, anti-inflammatory, and antioxidant properties, Food and Function, 2020, 11, 6608-6621. Search in Google Scholar

[53]. Bhutada, P.; Mundhada, Y.; Bansod, K.; Ubgade, A.; Quazi, M.; Umathe, S.; Mundhada, D., Reversal by quercetin of corticotrophin releasing factor induced anxiety- and depression-like effect in mice, Progress in Neuro-Psychopharmacology and Biologycal Psychiatry, 2010, 34, 955-960. Search in Google Scholar

[54]. Khan, H.; Ullah, H.; Aschner, M.; Cheang, W.S.; Akkol, E.K., Neuroprotective effects of quercetin in Alzheimer’s disease, Biomolecules, 2020, 10(1), 59. Search in Google Scholar

[55]. Tongjaroenbuangam, W.; Ruksee, N.; Chantiratikul, P.; Pakdeenarong, N.; Kongbuntad, W.; Govitrapong, P., Neuroprotective effects of quercetin, rutin and okra (Abelmoschus esculentus Linn.) in dexamethasone-treated mice, Neurochemistry International, 2011, 59(5), 677-685. Search in Google Scholar

[56]. dos Santos, J.S.; Cirino, J.P.G.; Carvalho, P.O.; Ortega, M.M., The pharmacological action of kaempferol in central nervous system diseases: A review, Frontiers in Pharmacology, 2021, 11, 565700. Search in Google Scholar

[57]. Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E., Rutin as a potent antioxidant: Implications for neurodegenerative disorders, Oxidative Medicine and Cellular Longevity, 2018, 6241017. Search in Google Scholar

[58]. Socała, K., Szopa, A.; Serefko, A.; Poleszak, E.; Wlaź, P., Neuroprotective effects of coffee bioactive compounds: a review, International Journal of Molecular Sciences, 2021, 22(1), 107. Search in Google Scholar

[59]. Bouayed, J.; Rammal, H.; Dicko, A.; Younos, C.; Soulimani, R., Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects, Journal of the Neurological Sciences, 2007, 262(1-2), 77-84. Search in Google Scholar

[60]. Park, S.H.; Sim, Y.B.; Han, P.L.; Lee, J.K.; Suh, H.W., Antidepressant-like effect of chlorogenic acid isolated from Artemisia capillaris Thunb, Animal Cells and Systems, 2010, 14(4), 253-259. Search in Google Scholar

[61]. Thapliyal, S.; Singh, T.; Handu, S.; Bisht, M.; Kumari, P.; Arya, P.; Srivastava, P.; Gandham, R., A review on potential footprints of ferulic acid for treatment of neurological disorders, Neurochemical Research, 2021, 46, 1043-1057. Search in Google Scholar

[62]. Shabani, S.; Rabiei, Z.; Amini-Khoei, H., Exploring the multifaceted neuroprotective actions of gallic acid: a review, International Journal of Food Properties, 2020, 23(1), 736-752. Search in Google Scholar

[63]. Alfei, S.; Turrini, F.; Catena, S.; Zunin, P.; Grilli, M.; Pittaluga, A.M.; Boggia, R., Ellagic acid a multi-target bioactive compound for drug discovery in CNS? A narrative review, European Journal of Medicinal Chemistry, 2019, 183, 111724. Search in Google Scholar

[66]. Gupta, A.; Singh, A.K.; Kumar, R.; Jamieson, S.; Pandey, A.K.; Bishayee, A., Neuroprotective potential of ellagic acid: A critical review, Advances in Nutrition, 2021, nmab007. Search in Google Scholar

[67]. Ito, H.; Sun, X.L.; Watanabe, M.; Okamoto, M.; Hatano, T., Chlorogenic acid and its metabolite mcoumaric acid evoke neurite outgrowth in hippocampal neuronal cells, Bioscience, Biotechnology, and Biochemistry, 2008, 72(3), 885-888. Search in Google Scholar

[68]. Yabe, T.; Hirahara, H.; Harada, N.; Ito, N.; Nagai, T.; Sanagi, T.; Yamada, H., Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo, Neuroscience, 2010, 165(2), 515-524. Search in Google Scholar

[69]. Ghaedi, N.; Pouraboli, I.; Askari, N., Antidiabetic properties of hydroalcoholic leaf and stem extract of Levisticum officinale: an implication for α-amylase inhibitory activity of extract ingredients through molecular docking, Iranian Journal of Pharmaceutical Research, 2020, 19(1), 231-250. Search in Google Scholar

[70]. Gholamhoseinian, A.; Fallah, H.; Sharifi-far, F.; Mirtajaddini, M., The inhibitory effect of some Iranian plant extracts on the alpha glucosidase, Iranian Journal of Basic Medical Sciences, 2008, 11(1), 1-9. Search in Google Scholar

[71]. Gholamhoseinian, A.; Shahouzehi, B.; Sharifi-far, F., Inhibitory effect of some plant extracts on pancreatic lipase, International Journal of Pharmacology, 2010, 6(1), 18-24. Search in Google Scholar

[72]. Sergent, T.; Vanderstraeten, J.; Winand, J.; Beguin, P.; Schneider, Y.J., Phenolic compounds and plant extracts as potential natural anti-obesity substances, Food Chemistry, 2012, 135(1), 68-73. Search in Google Scholar

[73]. Hossain, M.K.; Dayem, A.A.; Han, J.; Yin, Y.; Kim, K.; Saha, S.K.; Yang, G.M.; Choi, H.Y.; Cho, S.G., Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids, International Journal of Molecular Sciences, 2016, 17(4), 569. Search in Google Scholar

[74]. Nabavi, S.F.; Russo, G.L.; Daglia, M.; Nabavi, S.M., Role of quercetin as an alternative for obesity treatment: You are what you eat! Food Chemistry, 2015, 179, 305-310. Search in Google Scholar

[75]. Eid, H.M.; Haddad, P.S., The antidiabetic potential of quercetin: underlying mechanisms, Current Medicinal Chemistry, 2017, 24(4), 355-364. Search in Google Scholar

[76]. Shi, G.J.; Li, Y.; Cao, Q.H.; Wu, H.X.; Tang, X.Y.; Gao, X.H.; Yu, J.Q.; Chen, Z.; Yang, Y., In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature, Biomedicine and Pharmacotherapy, 2019, 109, 1085-1099. Search in Google Scholar

[77]. Zang, Y.; Zhang, L.; Igarashi, K.; Yu, C., The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice, Food and Function, 2015, 6(3), 834-841. Search in Google Scholar

[78]. Alkhalidy, H.; Moore, W.; Wang, Y.; Luo, J.; McMillan, R.P.; Zhen, W.; Zhou, K.; Liu, D., The flavonoid kaempferol ameliorates streptozotocin-induced diabetes by suppressing hepatic glucose production, Molecules, 2018, 23(9), 2338. Search in Google Scholar

[79]. Ghorbani, A., Mechanisms of antidiabetic effects of flavonoid rutin, Biomedicine and Pharmacotherapy, 2017, 96, 305-12. Search in Google Scholar

[80]. Yuan, X.; Wei, G.; You, Y.; Huang, Y.; Lee, H.J.; Dong, M.; Lin, J.; Hu, T.; Zhang, H.; Zhang, C.; Zhou, H.; Ye, R.; Qi, X.; Zhai, B.; Huang, W.; Liu, S.; Xie, W.; Liu, Q.; Liu, X.; Cui, C.; Li, D.; Zhan, J.; Cheng, J.; Yuan, Z.; Jin, W., Rutin ameliorates obesity through brown fat activation, The FASEB Journal, 2017, 31, 333-345. Search in Google Scholar

[81]. Gomes, J.V.P.; Rigolon, T.C.B.; da Silveira Souza, M.; Alvarez-Leite, J.I.; della Lucia, C.M.; Martino, H.S.D.; Rosa, C.O.B., Antiobesity effects of anthocyanins on mitochondrial biogenesis, inflammation, and oxidative stress: A systematic review, Nutrition, 2019, 66, 192-202. Search in Google Scholar

[82]. Ahangarpour, A.; Sayahi, M.; Sayahi, M., The antidiabetic and antioxidant properties of some phenolic phytochemicals: A review study, Diabetes and Metabolic Syndrome, 2019, 13(1), 854-857. Search in Google Scholar

[83]. Singh, A.K.; Rana, H.K.; Singh, V.; Yadav, T.C.; Varadwaj, P.; Pandey, A.K., Evaluation of antidiabetic activity of dietary phenolic compound chlorogenic acid in streptozotocin induced diabetic rats: molecular docking, molecular dynamics, in silico toxicity, in vitro and in vivo studies, Computers in Biology and Medicine, 2021, 104462. Search in Google Scholar

[84]. Narasimhan, A.; Chinnaiyan, M.; Karundevi, B., Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat, Applied Physiology, Nutrition and Metabolism, 2015, 40(8), 769-781. Search in Google Scholar

[85]. Zheng, Y.; Tian, J.; Yang, W.; Chen, S.; Liu, D.; Fang, H.; Zhang, H.; Ye, X., Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase, Food Chemistry, 2020, 317, 126346. Search in Google Scholar

[86]. Variya, B.C.; Bakrania, A.K.; Patel, S.S., Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling, Phytomedicine, 2020, 73, 152906. Search in Google Scholar

[87]. Seo, C.R.; Yi, B.R.; Oh, S.; Kwon, S.M.; Kim, S.; Song, N.J.; Cho, J.Y.; Park, K.M.; Ahn, J.Y.; Hong, J.W.; Kim, M.J.; Lee, J.H.; Park K.W., Aqueous extracts of hulled barley containing coumaric acid and ferulic acid inhibit adipogenesis in vitro and obesity in vivo, Journal of Functional Foods, 2015, 12, 208-218. Search in Google Scholar

[88]. Wang, W.; Pan, Y.; Wang, L.; Zhou, H.; Song, G.; Wang, Y.; Liu, J.; Li, A., Optimal dietary ferulic acid for suppressing the obesity-related disorders in leptin-deficient obese C57BL/6J-ob/ob mice, Journal of Agricultural and Food Chemistry, 2019, 67(15), 4250-4258. Search in Google Scholar

[89]. Dludla, P.V.; Nkambule, B.B.; Jack, B.; Mkandla, Z.; Mutize, T.; Silvestri, S.; Orlando, P.; Tiano, L.; Louw, J.; Mazibuko-Mbeje, S.E., Inflammation and oxidative stress in an obese state and the protective effects of gallic acid, Nutrients, 2019, 11(1), 23. Search in Google Scholar

[90]. Kang, I.; Buckner, T.; Shay, N.F.; Gu, L.; Chung, S., Improvements in metabolic health with consumption of ellagic acid and subsequent conversion into urolithins: Evidence and mechanisms, Advances in Nutrition, 2016, 7(5), 961-972. Search in Google Scholar

[91]. Miran, M.; Esfahani, H.M.; Farimani, M.M.; Ahmadi, A.A.; Ebrahimi, S.N., Essential oil composition and antibacterial activity of Levisticum officinale Koch at different developmental stages, Journal of Essential Oil-Bearing Plants, 2018, 21(4), 1051-1055. Search in Google Scholar

[92]. Esfahani, H.M.; Farimani, M.M.; Ebrahimi, S.N.; Jung, J.H.; Aliahmadi, A.; Abbas-Mohammadi, M.; Skropeta, D.; Kazemian, H.; Feizabadi, M.; Miran, M., Antibacterial components of Levisticum officinale Koch against multidrug-resistant Mycobacterium tuberculosis, Pharmaceutical Sciences, 2020, 26(4), 441-7. Search in Google Scholar

[93]. Miran, M.; Feizabadi, M.M.; Kazemian, H.; Kardan-Yamchi, J.; Monsef-Esfahani, H.R.; Ebrahimi, S.N., The activity of Levisticum officinale W.D.J. Koch essential oil against multidrug-resistant Mycobacterium tuberculosis, Iranian Journal of Microbiology, 2018, 10(6), 394-399. Search in Google Scholar

[94]. Ebrahimi, A.; Eshragh, A.; Mahzoonieh, M.R.; Lotfalian, S., Antibacterial and antibiotic-potentiation activities of Levisticum officinale L. extracts on pathogenic bacteria, International Journal of Infection, 2017, 4(2), e38768. Search in Google Scholar

[95]. Garvey, M.I.; Rahman, M.M.; Gibbons, S.; Piddock, L.J.V., Medicinal plant extracts with efflux inhibitory activity against Gram-negative bacteria, International Journal of Antimicrobial Agents, 2011, 37(2), 145-151. Search in Google Scholar

[96]. Hrudova, E.; Kocourkova, B.; Zelena, V., Insecticidal effect of carrot (Daucus carota) and lovage (Levisticum officinale) (Apiaceae) extracts against Tribolium confusum Jacquelin Du Duval, 1868 (Coleoptera, Tenebrionidae), Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2006, 54(1), 165-168. Search in Google Scholar

[97]. Batiha, G.E.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A., The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin, Foods, 2020, 9(3), 374. Search in Google Scholar

[98]. Escandón, R.A.; del Campo, M.; López-Solis, R.; Obreque-Slier, E.; Toledo, H., Antibacterial effect of kaempferol and (−)-epicatechin on Helicobacter pylori, European Food Research and Technology, 2016, 242, 1495-1502. Search in Google Scholar

[99]. Qiu, Y.; He, D.; Yang, J.; Ma, L.; Zhu, K.; Cao, Y., Kaempferol separated from Camellia oleifera meal by high-speed countercurrent chromatography for antibacterial application, European Food Research and Technology, 2020, 246, 2383-2397. Search in Google Scholar

[100]. Jin, Y.S., Recent advances in natural antifungal flavonoids and their derivatives, Bioorganic and Medicinal Chemistry Letters, 2019, 29(19), 126589. Search in Google Scholar

[101]. Patel, K.; Patel, D.K., Chapter 26 - The beneficial role of rutin, a naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update, In: Watson RR, Preedy VR (editors), Bioactive food as dietary interventions for arthritis and related inflammatory diseases (2nd Ed), Academic Press, London, 2019, pp. 457-479. Search in Google Scholar

[102]. Ragunathan, A.; Ravi, L., Potential antibacterial drug targets for quercetin and rutin: An in silico study using AutoDock, Der Pharmacia Lettre, 2015, 7(11), 68-72. Search in Google Scholar

[103]. Cushnie, T.P.T.; Lamb, A.J., Antimicrobial activity of flavonoids, International Journal of Antimicrobial Agents, 2005, 26(5), 343-356. Search in Google Scholar

[104]. Rocha, M.F.G.; Sales, J.A.; da Rocha, M.G.; Galdino, L.M.; de Aguiar, L.; Pereira-Neto, W.A.; Cordeiro, R.A.; Castelo-Branco, D.S.C.M.; Sidrim, J.J.C.; Brilhante, R.S.N., Antifungal effects of the flavonoids kaempferol and quercetin: a possible alternative for the control of fungal biofilms, Biofouling, 2019, 35(3), 320-328. Search in Google Scholar

[105]. Junqueira-Gonçalves, M.P.; Yáñez, L.; Morales, C.; Navarro, M.; Contreras, R.A.; Zúñiga, G.E., Isolation and characterization of phenolic compounds and anthocyanins from murta (Ugni molinae Turcz.) fruits. Assessment of antioxidant and antibacterial activity, Molecules, 2015, 20(4), 5698-5713. Search in Google Scholar

[106]. Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z., Antibacterial activity and mechanism of action of chlorogenic acid, Journal of Food Science, 2011, 76(6), M398-M403. Search in Google Scholar

[107]. Zhang, Z.; Pan, T., HPLC determination of chlorogenic acid in Verbena officinalis L. extract and its in-vitro antibacterial activity, Biomedical Research, 2017, 28(9), 3996-4001. Search in Google Scholar

[108]. Ding, Y.; Cao, Z.; Cao, L.; Ding, G.; Wang, Z.; Xiao, W., Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase, Scientific Reports, 2017, 7, 45723. Search in Google Scholar

[109]. Wang, G.F.; Shi, L.P.; Ren, Y.D.; Liu, Q.F.; Liu, H.F.; Zhang, R.J.; Li, Z.; Zhu, F.H.; He, P.L.; Tang, W.; Tao, P.Z.; Li, C.; Zhao, W.M.; Zuo, J.P., Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro, Antiviral Research, 2009, 83(2), 186-190. Search in Google Scholar

[110]. Sung, W.S.; Lee, D.G., Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption, Pure and Applied Chemistry, 2010, 82(1), 219-226. Search in Google Scholar

[111]. Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M., Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria, Microbial Drug Resistance, 2013, 19(4), 256-265. Search in Google Scholar

[112]. Li, Z.J.; Liu, M.; Dawuti, G.; Dou, Q.; Ma, Y.; Liu, H.J.; Aibai, S., Antifungal activity of gallic acid in vitro and in vivo, Phytotherapy Research, 2017, 31(7), 1039-1045. Search in Google Scholar

[113]. Hsu, W.C.; Chang, S.P.; Lin, L.C.; Li, C.L.; Richardson, C.D.; Lin, C.C.; Lin, L.T., Limonium sinense and gallic acid suppress hepatitis C virus infection by blocking early viral entry, Antiviral Research, 2015, 118, 139-147. Search in Google Scholar

[114]. De, R.; Sarkar, A.; Ghosh, P.; Ganguly, M.; Karmakar, B.C.; Saha, D.R.; Halder, A.; Chowdhury, A.; Mukhopadhyay, A.K., Antimicrobial activity of ellagic acid against Helicobacter pylori isolates from India and during infections in mice, Journal of Antimicrobial Chemotherapy; 2018, 73(6), 1595-1603. Search in Google Scholar

[115]. Panichayupakaranant, P.; Tewtrakul, S.; Yuenyongsawad, S., Antibacterial, anti-inflammatory and anti-allergic activities of standardised pomegranate rind extract, Food Chemistry, 2010, 123(2), 400-403. Search in Google Scholar

[116]. Ani, V.; Varadaraj, M.C.; Naidu, K.A., Antioxidant and antibacterial activities of polyphenolic compounds from bitter cumin (Cuminum nigrum L.), European Food Research and Technology, 2006, 224, 109-115. Search in Google Scholar

[117]. Li, Z.J.; Guo, X.; Dawuti, G.; Aibai, S., Antifungal activity of ellagic acid in vitro and in vivo, Phytother Research, 2015, 29(7), 1019-1025. Search in Google Scholar

[118]. Afarnegan, H.; Shahraki, A.; Shahraki, J., The hepatoprotective effects of aquatic extract of Levisticum officinale against paraquat hepatocyte toxicity, Pakistan Journal of Pharmaceutical Sciences, 2017, 30(6S), 2363-2368. Search in Google Scholar

[119]. Miltonprabu, S.; Tomczyk, M.; Skalicka-Woźniak, K.; Rastrelli, L.; Daglia, M.; Nabavi, S.F.; Alavian, S.M.; Nabavi, S.M., Hepatoprotective effect of quercetin: From chemistry to medicine, Food and Chemical Toxicology, 2017, 108(Pt B), 365-374. Search in Google Scholar

[120]. Wang, M.; Sun, J.; Jiang, Z.; Xie, W.; Zhang, Z., Hepatoprotective effect of kaempferol against alcoholic liver injury in mice, The American Journal of Chinese Medicine, 2015, 43(2), 241-254. Search in Google Scholar

[121]. Janbaz, K.H.; Saeed, S.A.; Gilani, A.H., Protective effect of rutin on paracetamol- and CCl4-induced hepatotoxicity in rodents, Fitoterapia, 2002, 73(7-8), 557-563. Search in Google Scholar

[122]. Danielewski, M.; Matuszewska, A.; Nowak, B.; Kucharska, A.Z.; Sozański, T., The effects of natural iridoids and anthocyanins on selected parameters of liver and cardiovascular system functions, Oxidative Medicine and Cellular Longevity, 2020, 2735790. Search in Google Scholar

[123]. Shi, H.; Dong, L.; Bai, Y.; Zhao, J.; Zhang, Y.; Zhang, L., Chlorogenic acid against carbon tetrachloride-induced liver fibrosis in rats, European Journal of Pharmacology, 2009, 623, 119-124. Search in Google Scholar

[124]. Chen, Z.; Yang, Y.; Mi, S.; Fan, Q.; Sun, X.; Deng, B.; Wu, G.; Li, Y.; Zhou, Q.; Ruan, Z., Hepatoprotective effect of chlorogenic acid against chronic liver injury in inflammatory rats, Journal of Functional Foods, 2019, 62, 103540. Search in Google Scholar

[125]. Krishnan, D.N.; Prasanna, N.; Sabina, E.P.; Rasool, M.K., Hepatoprotective and antioxidant potential of ferulic acid against acetaminophen-induced liver damage in mice, Comparative Clinical Pathology, 2013, 22, 1177-1181. Search in Google Scholar

[126]. Rasool, M.K.; Sabina, E.P.; Ramya, S.R.; Preety, P.; Patel, S.; Mandal, N.; Mishra, P.P.; Samuel, J., Hepatoprotective and antioxidant effects of gallic acid in paracetamol-induced liver damage in mice, Journal of Pharmacy and Pharmacology, 2010, 62(5), 638-643. Search in Google Scholar

[127]. Girish, C.; Koner, B.C.; Jayanthi, C.; Rao, K.R.; Rajesh, B.; Pradhan, S.C., Hepatoprotective activity of picroliv, curcumin and ellagic acid compared to silymarin on paracetamol induced liver toxicity in mice, Fundamental and Clinical Pharmacology, 2009, 23(6), 735-745. Search in Google Scholar

[128]. Yang, C.; Li, L.; Ma, Z.; Zhong, Y.; Pang, W.; Xiong, M.; Fang, S.; Li, Y., Hepatoprotective effect of methyl ferulic acid against carbon tetrachloride-induced acute liver injury in rats, Experimental and Therapeutic Medicine, 2018, 15(3), 2228-2238. Search in Google Scholar

[129]. Ojeaburu, S.I.; Oriakhi, K., Hepatoprotective, antioxidant and, anti-inflammatory potentials of gallic acid in carbon tetrachloride-induced hepatic damage in Wistar rats, Toxicology Reports, 2021, 8, 177-185. Search in Google Scholar

[130]. Girish, C.; Pradhan, S.C., Hepatoprotective activities of picroliv, curcumin, and ellagic acid compared to silymarin on carbon-tetrachloride-induced liver toxicity in mice, Journal of Pharmacology and Pharmacotherapeutics, 2012, 3(2), 149-155. Search in Google Scholar

[131]. Combest, W.; Newton, M.; Combest, A.; Kosier, J.H., Effects of herbal supplements on the kidney, Urologic Nursing, 2005, 25(5), 381-403. Search in Google Scholar

[132]. Tvrda, E.; Varga, A.; Slavik, M.; Arvay, J., Levisticum officinale and its effects on bovine spermatozoa activity, Journal of Microbiology, Biotechnology and Food Sciences, 2019, 8(5), 1212-1216. Search in Google Scholar

[133]. Yuksel, Y.; Yuksel, R.; Yagmurca, M.; Haltas, H.; Erdamar, H.; Toktas, M.; Ozcan, O., Effects of quercetin on methotrexate-induced nephrotoxicity in rats, Human and Experimental Toxicology, 2017, 36(1), 51-61. Search in Google Scholar

[134]. Wang, Z.; Sun, W.; Sun, X.; Wang, Y.; Zhou, M., Kaempferol ameliorates Cisplatin induced nephrotoxicity by modulating oxidative stress, inflammation and apoptosis via ERK and NF-κB pathways, AMB Express, 2020, 10, 58. Search in Google Scholar

[135]. Arjumand, W.; Seth, A.; Sultana, S., Rutin attenuates cisplatin induced renal inflammation and apoptosis by reducing NFκB, TNF-α and caspase-3 expression in Wistar rats, Food and Chemical Toxicology, 2011, 49(9), 2013-2021. Search in Google Scholar

[136]. Qian, X.; Wang, X.; Luo, J.; Liu, Y.; Pang, J.; Zhang, H.; Xu, Z.; Xie, J.; Jiang, X.; Ling, W., Hypouricemic and nephroprotective roles of anthocyanins in hyperuricemic mice, Food and Function, 2019, 10(2), 867-878. Search in Google Scholar

[137]. Domitrović, R.; Cvijanović, O.; Šušnić, V.; Katalinić, N., Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury, Toxicology, 2014, 324, 98-107. Search in Google Scholar

[138]. El-Garhy, A.M.; El-Raouf, O.M.A.; El-Sayeh, B.M.; Fawzy, H.M.; Abdallah, D.M., Ellagic acid antiinflammatory and antiapoptotic potential mediate renoprotection in cisplatin nephrotoxic rats, Journal of Biochemical and Molecular Toxicology, 2014, 28(10), 472-479. Search in Google Scholar

[139]. El-Ashmawy, N.E.; Khedr, N.F.; El-Bahrawy, H.A.; Helal, S.A., Upregulation of PPAR-γ mediates the renoprotective effect of omega-3 PUFA and ferulic acid in gentamicin-intoxicated rats, Biomedicine and Pharmacotherapy, 2018, 99, 504-510. Search in Google Scholar

[140]. Ahmadvand, H.; Nouryazdan, N.; Nasri, M.; Adibhesami, G.; Babaeenezhad, E., Renoprotective effects of gallic acid against gentamicin nephrotoxicity through amelioration of oxidative stress in rats, Brazilian Archives of Biology and Technology, 2020, 63, e20200131. Search in Google Scholar

[141]. Osawe, S.O.; Farombi, E.O., Quercetin and rutin ameliorates sulphasalazine-induced spermiotoxicity, alterations in reproductive hormones and steroidogenic enzyme imbalance in rats, Andrologia, 2018, 50(5), e12981. Search in Google Scholar

[142]. Ibrahim, A.F.M.; Hafez, L.M.; Yousif, A.B., Protective role of polyphenols (anthocyanin, gallic acid) and blackberry juice against acrylamide reproductive toxicity in male rats, International Journal of Progressive Sciences and Technologies, 2020, 23(2), 292-300. Search in Google Scholar

[143]. Owumi, S.E.; Anaikor, R.A.; Arunsi, U.O.; Adaramoye, O.A.; Oyelere, A.K., Chlorogenic acid co-administration abates tamoxifen-mediated reproductive toxicities in male rats: An experimental approach, Journal of Food Biochemistry, 2021, 45(2), e13615. Search in Google Scholar

[144]. Oyagbemi, A.A.; Omobowale, T.O.; Saba, A.B.; Adedara, I.A.; Olowu, E.R.; Akinrinde, A.S.; Dada, R.O., Gallic acid protects against cyclophosphamide-induced toxicity in testis and epididymis of rats, Andrologia, 2016, 48(4), 393-401. Search in Google Scholar

[145]. Izquierdo-Vega, J.A.; Madrigal-Santillán, E.O.; Chávez-Pagola, J.T.; Vega, M.C.V.; Sánchez-Gutiérrez, M., The activity of ellagic acid in male reproduction: A mini-review, International Journal of Medical Reviews, 2019, 6(4), 135-139. Search in Google Scholar

[146]. Patel, R.V.; Mistry, B.M.; Shinde, S.K.; Syed, R.; Singh, V.; Shin, H.S., Therapeutic potential of quercetin as a cardiovascular agent, European Journal of Medicinal Chemistry, 2018, 155, 889-904. Search in Google Scholar

[147]. Rolnik, A.; Żuchowski, J.; Stochmal, A.; Olas, B., Quercetin and kaempferol derivatives isolated from aerial parts of Lens culinaris Medik as modulators of blood platelet functions, Industrial Crops and Products, 2020, 152, 112536. Search in Google Scholar

[148]. Siti, H.N.; Jalil, J.; Asmadi, A.Y.; Kamisah, Y., Roles of rutin in cardiac remodeling, Journal of Functional Foods, 2020, 64, 103606. Search in Google Scholar

[149]. Alam, A., Anti-hypertensive effect of cereal antioxidant ferulic acid and its mechanism of action, Frontiers in Nutrition, 2019, 6, 121. Search in Google Scholar

[150]. Akbari, G., Molecular mechanisms underlying gallic acid effects against cardiovascular diseases: An update review, Avicenna Journal of Phytomedicine, 2020, 10(1), 11-23. Search in Google Scholar

[151]. Berkban, T.; Boonprom, P.; Bunbupha, S.; Welbat, J.U.; Kukongviriyapan, U.; Kukongviriyapan, V.; Pakdeechote, P.; Prachaney, P., Ellagic acid prevents L-NAME-induced hypertension via restoration of eNOS and p47phox expression in rats, Nutrients, 2015, 7(7), 5265-5280. Search in Google Scholar

[152]. Oršolić, N.; Jeleč, Z.; Nemrava, J.; Balta, V.; Gregorovic, G.; Jelec, D., Effect of quercetin on bone mineral status and markers of bone turnover in retinoic acid-induced osteoporosis, Polish Journal of Food and Nutrition Sciences, 2018, 68(2), 149-162. Search in Google Scholar

[153]. Wong, S.K.; Chin, K.Y.; Ima-Nirwana, S., The osteoprotective effects of kaempferol: The evidence from in vivo and in vitro studies, Drug Design, Development and Therapy, 2019, 13, 3497-3514. [154]. Sharma, A.R.; Nam, J.S., Kaempferol stimulates WNT/β-catenin signaling pathway to induce differentiation of osteoblasts, The Journal of Nutritional Biochemistry, 2019, 74, 108228. Search in Google Scholar

[155]. Abdel-Naim, A.B.; Alghamdi, A.A.; Algandaby, M.M.; Al-Abbasi, F.A.; Al-Abd, A.M.; Eid, B.G.; Abdallah, H.M.; El-Halawany, A.M., Rutin isolated from Chrozophora tinctoria enhances bone cell proliferation and ossification markers, Oxidative Medicine and Cellular Longevity, 2018, 5106469. Search in Google Scholar

[156]. Wang, Q.L.; Huo, X.C.; Wang, J.H.; Wang, D.P.; Zhu, Q.L.; Liu, B.; Xu, L.L., Rutin prevents the ovariectomy-induced osteoporosis in rats, European Review for Medical and Pharmacological Sciences, 2017, 21, 1911-1917. Search in Google Scholar

[157]. Sakaki, J.R.; Melough, M.M.; Chun, O.K., Chapter 14 - Anthocyanins and anthocyanin-rich food as antioxidants in bone pathology, In: Preedy VR (editor), Pathology. Oxidative stress and dietary antioxidants, Academic press, London, 2020, pp. 145-158. Search in Google Scholar

[158]. Zhou, R.P.; Lin, S.J.; Wan, W.B.; Zuo, H.L.; Yao, F.F.; Ruan, H.B.; Xu, J.; Song, W.; Zhou, Y.C.; Wen, S.Y.; Dai, J.H.; Zhu, M.L.; Luo, J., Chlorogenic acid prevents osteoporosis by Shp2/PI3K/Akt pathway in ovariectomized rats, PLoS ONE, 2016, 11(12), e0166751. Search in Google Scholar

[159]. Min, J.; Yuan, Z.; Zhang, Q.; Lin, S.; Wang, K.; Luo, J., Analysis of anti-osteoporosis function of chlorogenic acid by gene microarray profiling in ovariectomy rat model. Bioscience Reports, 2018, 38(4), BSR20180775. Search in Google Scholar

[160]. Hou, T.; Zhang, L.; Yang, X., Ferulic acid, a natural polyphenol, protects against osteoporosis by activating SIRT1 and NF-κB in neonatal rats with glucocorticoid-induced osteoporosis, Biomedicine and Pharmacotherapy, 2019, 120, 109205. Search in Google Scholar

[161]. Sagar, T.; Rantlha, M.; Kruger, M.C.; Coetzee, M.; Deepak, V., Ferulic acid impairs osteoclast fusion and exacerbates survival of mature osteoclasts, Cytotechnology, 2016, 68, 1963-1972. Search in Google Scholar

[162]. Lin, X.; Yuan, G.; Li, Z.; Zhou, M.; Hu, X.; Song, F.; Shao, S.; Fu, F.; Zhao, J.; Xu, J.; Liu, Q.; Feng, H., Ellagic acid protects ovariectomy-induced bone loss in mice by inhibiting osteoclast differentiation and bone resorption, Journal of Cellular Physiology, 2020, 235(9), 5951-5961. Search in Google Scholar

[163]. Zhao, L.; Wang, H.; Du, X., The therapeutic use of quercetin in ophthalmology: recent applications, Biomedicine and Pharmacotherapy, 2021, 137, 111371. Search in Google Scholar

[164]. Molitorisova, M.; Sutovska, M.; Kazimierova, I.; Barborikova, J.; Joskova, M.; Novakova, E.; Franova, S., The anti-asthmatic potential of flavonol kaempferol in an experimental model of allergic airway inflammation, European Journal of Pharmacology, 2021, 891, 173698. Search in Google Scholar

eISSN:
2603-347X
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Chemistry, other, Geosciences, Geography, Life Sciences, Physics