Cite

1. Tin-Oo MM, Saddki N, Hassan N. Factors influencing patient satisfaction with dental appearance and treatments they desire to improve aesthetics. BMC Oral Health. 2011;11(1):1–8.10.1186/1472-6831-11-6305927121342536 Search in Google Scholar

2. Samorodnitzky-Naveh GR, Geiger SB, Levin L. Patients’ satisfaction with dental esthetics. The Journal of the American Dental Association. 2007;138(6):805–8.10.14219/jada.archive.2007.026917545270 Search in Google Scholar

3. McLaren EA, Giordano R. Ceramics overview: classification by microstructure and processing methods. International Dentistry – African Edition. 2014;4(3):18–30. Search in Google Scholar

4. Sakaguchi, Powers. Craig’s Restorative dental materials. Edition thirteen. Elsevier Mosby; 2012. P.33–49; 85; 91; 253–258. Search in Google Scholar

5. Anusavice K, Shen C, Rawls R. Philip’s Science od Dental Materials. Edition twelve. Elsevier; 2013.P. 48–64. Search in Google Scholar

6. Domingues NB, Galvão BR, Ribeiro S, Almeida Junior AA de, Longhini D, Adabo GL. Comparison of the indentation strength and single-edge-v-notched beam methods for dental ceramic fracture toughness testing. Braz J Oral Sci. 2017;15(2):109-112.10.20396/bjos.v15i2.8648760 Search in Google Scholar

7. Chun KJ, Lee JY. Comparative study of mechanical properties of dental restorative materials and dental hard tissues in compressive loads. Journal of Dental Biomechanics. 2014;5:1–6.10.1177/1758736014555246 Search in Google Scholar

8. Shenoy A, Shenoy N. Dental ceramics: An update. J Conserv Dent. 2010;13(4):195–203.10.4103/0972-0707.73379301002321217946 Search in Google Scholar

9. Li RWK, Chow TW, Matinlinna JP. Ceramic dental biomaterials and CAD/CAM technology: State of the art. Journal of Prosthodontic Research. 2014;58(4):208–16.10.1016/j.jpor.2014.07.00325172234 Search in Google Scholar

10. Leung BTW, Tsoi JKH, Matinlinna JP, Pow EHN. Comparison of mechanical properties of three machinable ceramics with an experimental fluorophlogopite glass ceramic. The Journal of Prosthetic Dentistry. 2015;114(3):440–6.10.1016/j.prosdent.2015.02.02426013069 Search in Google Scholar

11. Fasbinder DJ. Materials for Chairside CAD/CAM Restorations. Compendium of continuing education in dentistry. 2010;31(9):702–9. Search in Google Scholar

12. Atay DDS, PhD A, Sağirkaya DDS, PhD E. Effects of Different Storage Conditions on Mechanical Properties of CAD/CAM Restorative Materials. Odovtos - Int J Dent Sc. 2019;161–74.10.15517/ijds.2020.38742 Search in Google Scholar

13. Helvey GA. Classification of Dental Ceramics. Inside dentistry. 2013;April 2013:62–76. Search in Google Scholar

14. Sen N, Us YO. Mechanical and optical properties of monolithic CAD-CAM restorative materials. The Journal of Prosthetic Dentistry. 2018;119(4):593–9.10.1016/j.prosdent.2017.06.01228781072 Search in Google Scholar

15. Low IM. Advances in Ceramic Matrix Composites. Edition secound. Woodhead publishing; 2018. P.711–721.10.1016/B978-0-08-102166-8.00001-3 Search in Google Scholar

16. Vichi A, Sedda M, Del Siena F, Louca C, Ferrari M. Flexural resistance of Cerec CAD/CAM system ceramic blocks. Part 1: Chairside materials. American Journal of Dentistry. 2013;26(5):255–9. Search in Google Scholar

17. D’Arcangelo C, Vanini L, Rondoni GD, De Angelis F. Wear properties of dental ceramics and porcelains compared with human enamel. The Journal of Prosthetic Dentistry. 2016;115(3):350–5.10.1016/j.prosdent.2015.09.01026553254 Search in Google Scholar

18. Denry I, Holloway J. Ceramics for Dental Applications: A Review. Materials. 2010;3(1):351–68.10.3390/ma3010351 Search in Google Scholar

19. Blackburn C, Rask H, Awada A. Mechanical properties of resin-ceramic CAD-CAM materials after accelerated aging. The Journal of Prosthetic Dentistry. 2018;119(6):954–8.10.1016/j.prosdent.2017.08.01629195816 Search in Google Scholar

20. Lu T, Peng L, Xiong F, et al. A 3-year clinical evaluation of endodontically treated posterior teeth restored with two different materials using the CEREC AC chair-side system. The Journal of Prosthetic Dentistry. 2018;119(3):363–8.10.1016/j.prosdent.2017.04.02228689915 Search in Google Scholar

21. Lauvahutanon S, Takahashi H, Shiozawa M, et al. Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J. 2014;33(5):705–10.10.4012/dmj.2014-20825273052 Search in Google Scholar

22. Sonmez N, Gultekin P, Turp V, Akgungor G, Sen D, Mijiritsky E. Evaluation of five CAD/CAM materials by microstructural characterization and mechanical tests: a comparative in vitro study. BMC Oral Health. 2018;18(5):1–13.10.1186/s12903-017-0458-2576401729321010 Search in Google Scholar

23. Lambert H, Durand J-C, Jacquot B, Fages M. Dental biomaterials for chairside CAD/CAM: State of the art. J Adv Prosthodont. 2017;9:486–95.10.4047/jap.2017.9.6.486574145429279770 Search in Google Scholar

24. Alamoush RA, Silikas N, Salim NA, Al-Nasrawi S, Satterthwaite JD. Effect of the Composition of CAD/CAM Composite Blocks on Mechanical Properties. BioMed Research International. 2018;2018:1–8.10.1155/2018/4893143621879830426009 Search in Google Scholar

25. Sulaiman TA. Materials in digital dentistry—A review. J Esthet Restor Dent. 2020;32(2):171–81.10.1111/jerd.1256631943720 Search in Google Scholar

26. de Kok P, de Jager N, Veerman IAM, Hafeez N, Kleverlaan CJ, Roeters JFM. Effect of a retention groove on the shear bond strength of dentin-bonded restorations. The Journal of Prosthetic Dentistry. 2016;116(3):382–8.10.1016/j.prosdent.2016.01.03227112414 Search in Google Scholar

27. Badawy R, El-Mowafy O, Tam L. Fracture toughness of chairside CAD/CAM materials – Alternative loading approach for compact tension test. Dental Materials. 2016;32:847–52.10.1016/j.dental.2016.03.00327133875 Search in Google Scholar

28. Bajraktarova-Valjakova E, Korunoska-Stevkovska V, Kapusevska B, Gigovski N, Bajraktarova-Misevska C, Grozdanov A. Contemporary Dental Ceramic Materials, A Review: Chemical Composition, Physical and Mechanical Properties, Indications for Use. Open Access Maced J Med Sci. 2018;6(9):1742–55.10.3889/oamjms.2018.378618251930338002 Search in Google Scholar

29. Sannino G, Germano F, Arcuri L, Bigelli E, Arcuri C, Barlattani A. Cerec CAD/CAM chairside system. Oral & Implantology. 2014;7(3):57–70. Search in Google Scholar

30. Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J.2008;204(9):505–11.10.1038/sj.bdj.2008.35018469768 Search in Google Scholar

31. Vargas MA, Bergeron C, Diaz-Arnold A. Cementing all-ceramic restorations. The Journal of the American Dental Association. 2011;142:20S-24S.10.14219/jada.archive.2011.033921454837 Search in Google Scholar

32. Brenes DC, Duqum I, Mendonza G. Materials and systems for all c-eramic CAD/CAM restorations. Dental tribute. 2016;3:10–5. Search in Google Scholar

33. Pitiaumnuaysap L, Phokhinchatchanan P, Suputtamongkol K, Kanchanavasita W. Fracture resistance of four dental computer-aided design and computer-aided manufacturing glass-ceramics. Mahidol Dental Journal. 2017;37(2):201–8. Search in Google Scholar

34. Ritzberger C, Apel E, Höland W, Peschke A, Rheinberger V. Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies. Materials. 2010;3(6):3700–13.10.3390/ma3063700 Search in Google Scholar

35. Zhu J, Rong Q, Wang X, Gao X. Influence of remaining tooth structure and restorative material type on stress distribution in endodontically treated maxillary premolars: A finite element analysis. The Journal of Prosthetic Dentistry. 2017;117(5):646–55.10.1016/j.prosdent.2016.08.02327881319 Search in Google Scholar

36. Byeon S-M, Song J-J. Mechanical Properties and Microstructure of the Leucite-Reinforced Glass-Ceramics for Dental CAD/CAM. J Dent Hyg Sci. 2018;18(1):42–9.10.17135/jdhs.2018.18.1.42 Search in Google Scholar

37. Furtado de Mendonca A, Shahmoradi M, Gouvêa CVD de, De Souza GM, Ellakwa A. Microstructural and Mechanical Characterization of CAD/CAM Materials for Monolithic Dental Restorations: Characterization of CAD/CAM Materials. Journal of Prosthodontics. 2019;28(2):587–94.10.1111/jopr.1296430121945 Search in Google Scholar

38. Culp L, McLaren EA. Lithium Disilicate: The Restorative Material of Multiple Options. Compendium of continuing education in dentistry. 2010;31(9):716–25. Search in Google Scholar

39. Lawson NC, Bansal R, Burgess JO. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dental Materials. 2016;32(11):275–83.10.1016/j.dental.2016.08.22227639808 Search in Google Scholar

40. Goujat A, Abouelleil H, Colon P, Jeannin C, Pradelle N, Seux D, et al. Mechanical properties and internal fit of 4 CAD-CAM block materials. The Journal of Prosthetic Dentistry. 2018;119(3):384–9.10.1016/j.prosdent.2017.03.00128552287 Search in Google Scholar

41. Zarone F, Ferrari M, Mangano FG, Leone R, Sorrentino R. “Digitally Oriented Materials”: Focus on Lithium Disilicate Ceramics. International Journal of Dentistry. 2016;2016:1–10.10.1155/2016/9840594500734027635140 Search in Google Scholar

42. Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dental Materials. 2016;32(7):908–14.10.1016/j.dental.2016.03.01327087687 Search in Google Scholar

43. Zhang Y, Lawn BR. Novel Zirconia Materials in Dentistry. Journal of Dental Research. 2018;97(2):140-147.10.1177/0022034517737483578447429035694 Search in Google Scholar

44. Chen X-P, Xiang Z-X, Song X-F, Yin L. Machinability: Zirconia-reinforced lithium silicate glass ceramic versus lithium disilicate glass ceramic. Journal of the Mechanical Behavior of Biomedical Materials. 2020;101:1–10.10.1016/j.jmbbm.2019.103435 Search in Google Scholar

45. Ramos N de C, Campos TMB. Microstructure characterization and SCG of newly engineered dental ceramics. Dental Materials. 2016;32(7):870–8.10.1016/j.dental.2016.03.01827094589 Search in Google Scholar

46. Sacher E, Franca R. Dental Biomaterials. Vol. secound. New Jersey: World Scientific; 2018. P.148–203.10.1142/10589 Search in Google Scholar

47. Willard A, Gabriel Chu T-M. The science and application of IPS e.Max dental ceramic. The Kaohsiung Journal of Medical Sciences. 2018;34(4):238–42.10.1016/j.kjms.2018.01.01229655413 Search in Google Scholar

48. Eakle WS, Bastin KG. Dental Materials Clinical Applications for Dental Assistants and Dental Hygienists. fourth. Elsevier Health Sciences; 2019. Search in Google Scholar

49. McLaren EA, Figueira J. Updating Classifications of Ceramic Dental Materials: A Guide to Material Selection. Compendium of continuing education in dentistry. 2015;36(6):739–44. Search in Google Scholar

50. Rinke S, Rödiger M, Ziebolz D, Schmidt A-K. Fabrication of Zirconia-Reinforced Lithium Silicate Ceramic Restorations Using a Complete Digital Workflow. Case Reports in Dentistry. 2015;1–7.10.1155/2015/162178460980626509088 Search in Google Scholar

51. Rinke S, Pabel A-K, Rödiger M, Ziebolz D. Chairside Fabrication of an All-Ceramic Partial Crown Using a Zirconia-Reinforced Lithium Silicate Ceramic. Case Reports in Dentistry. 2016;1–7.10.1155/2016/1354186479983227042362 Search in Google Scholar

52. Traini T, Sinjari B, Pascetta R, et al. The zirconia-reinforced lithium silicate ceramic: lights and shadows of a new material. Dental Materials Journal. 2016;35(5):748–55.10.4012/dmj.2016-04127546858 Search in Google Scholar

53. Helvey GA. Zirconia and Computer-aided Design/Computer-aided Manufacturing (CAD/CAM) Dentistry. Inside dentistry. 2008;4(4). Search in Google Scholar

54. Della Bona A, Borba M, Benetti P, et al. Adhesion to Dental Ceramics. Curr Oral Health Rep. 2014;1(4):232–8.10.1007/s40496-014-0030-y Search in Google Scholar

55. Passos SP, Torrealba Y, Major P, Linke B, Flores-Mir C, Nychka JA. In Vitro Wear Behavior of Zirconia Opposing Enamel: A Systematic Review: Enamel Wear Caused by Zirconia Ceramics. Journal of Prosthodontics. 2014;23(8):593–601.10.1111/jopr.1216724957813 Search in Google Scholar

56. Alghazzawi TF, Lemons J, Liu P-R, Essig ME, Bartolucci AA, Janowski GM. Influence of Low-Temperature Environmental Exposure on the Mechanical Properties and Structural Stability of Dental Zirconia: Zirconia Exposed to Low-Temperature Degradation. Journal of Prosthodontics. 2012;21(5):363–9.10.1111/j.1532-849X.2011.00838.x22372432 Search in Google Scholar

57. Burgess JO. Zirconia: The Material, Its Evolution, and Composition. Compendium of continuing education in dentistry. 2018;39(4):4–8. Search in Google Scholar

58. Meirelles L. Ceramic CAD/CAM Materials: An Overview of Clinical Uses and Considerations. ADA professional product rewiev. 2017;12(1):1–9. Search in Google Scholar

59. Campos F, Almeida C, Rippe M, de Melo R, Valandro L, Bottino M. Resin Bonding to a Hybrid Ceramic: Effects of Surface Treatments and Aging. Operative Dentistry. 2015;40(6):1–8. Search in Google Scholar

60. Ceren N, Turp V, Emir F, Akgungor G, Ayyildiz S, Şen D. Nanoceramics and hybrid Search in Google Scholar

61. materials used in CAD/CAM systems. Aydın Dental Journal. 2016;55–61. Search in Google Scholar

62. Dirxen C, Blunck U, Preissner S. Clinical Performance of a New Biomimetic Double Network Material. The Open Dentistry Journal. 2013;7:118–22.10.2174/1874210620130904003380758224167534 Search in Google Scholar

63. Wang H, Cui B, Li J, et al. Mechanical properties and biocompatibility of polymer infiltrated sodium aluminum silicate restorative composites. J Adv Ceram. 2017;6(1):73–9.10.1007/s40145-016-0214-0 Search in Google Scholar

64. Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dental Materials. 2014;30(5):564–9.10.1016/j.dental.2014.02.019465162324656471 Search in Google Scholar

65. Bao YW, Gong J, Tian. Testing and Evaluation of Inorganic Materials I. Switzerland: Trans Tech Publications Ltd; 2011. P.300. Search in Google Scholar

eISSN:
2601-6877
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other, Medicine, Clinical Medicine, Surgery, Materials Sciences