Acceso abierto

Evaluation of GGMs Based on the Terrestrial Gravity Disturbance and Moho Depth in Afar, Ethiopia

   | 08 oct 2021

Cite

Barthelmes F. (2013) Definition of Functional of the Geopotential and Their Calculation from Spherical Harmonic Models, Scientific Technical Report STR09/02: Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. https://doi.org/10.2312/GFZ.b103-0902-26 Search in Google Scholar

Barthelmes F. (2014) Global models. In: Grafarend E. (Ed.) Encyclopedia of Geodesy. Springer International Publishing, Switzerland, 1-9, https://doi.org/10.1007/978-3-319-02370-043-1. Search in Google Scholar

Bhattacharyya B. K. (1978) Computer modeling in gravity and magnetic interpretation. Geophysics, Vol. 43, No. 5, 912-929. Search in Google Scholar

Birbiraw D. (2015) Evaluation of Accuracy of Earth Gravity Model 2008 (EGM2008) using GPS and Levelling at central and western part of Ethiopia, Unpublished Master thesis, Addis Ababa University, Addis Ababa, Ethiopia Search in Google Scholar

Bolkas D., Fotopoulos G., and Braun A. (2016) On the impact of airborne gravity data to fused gravity field models, Journal of Geodesy, Vol. 90, No. 6, 561-571. Search in Google Scholar

Bruinsma S., Förste C., Abrikosov O., Lemoine J., Marty J., Mulet S., Rio M., and Bonvalot S. (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data; Geophysical Research Letters, Vol. 41, No. 21, 7508-7514, https://doi.org/10.1002/2014GL062045.10.1002/2014GL062045 Search in Google Scholar

Ermias W. (2015) Evaluation of Accuracy of Earth Gravity Model 2008 (EGM2008) using GPS and Levelling at DebreBirhan city, Unpublished Master thesis, Addis Ababa University, Addis Ababa, Ethiopia Search in Google Scholar

Floberghagen R., Fehringer M., Lamarre D., Muzi D., Frommknecht B., Steiger C.H., Pineiro J., and da Costa A. (2011) Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. Journal of Geodesy, Vol. 85, No. 11, 749-758. Search in Google Scholar

Förste C., Abrykosov O., Bruinsma S., Dahle C., König R., and Lemoine J. (2019) ESA’s Release 6 GOCE gravity field model by means of the direct approach based on improved filtering of the reprocessed gradients of the entire mission (GO_CONS_GCF_2_DIR_R6). GFZ Data Services. https://doi.org/10.5880/ICGEM.2019.004 Search in Google Scholar

Förste C., Bruinsma S. L., Abrikosov O., Lemoine J.-M., Marty J. C., Flechtner F., Balmino G., Barthelmes F., and Biancale R. (2014) EIGEN-6C4: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. https://doi.org/10.5880/icgem.2015.1. Search in Google Scholar

Gerard A. and Debeglia N. (1975) Automatic three dimensional modeling for the interpretation of gravity or magnetic anomalies. Geophysics, Vol.40, No. 6, 1014-1034. Search in Google Scholar

Godah W., Szelachowska M., and Krynski J. (2017) On the analysis of temporal geoid height variations obtained from GRACE-based GGMs over the area of Poland. ActaGeophysica, Vol. 65, 713-725.10.1007/s11600-017-0064-3 Search in Google Scholar

Hackney R.I., Featherstone W.E. (2003) Geodetic versus geophysical perspectives of the ‘gravity anomaly’, Geophysical Journal International, Vol. 154, Issue 1, 35–43, https://doi.org/10.1046/j.1365-246X.2003.01941.x10.1046/j.1365-246X.2003.01941.x Search in Google Scholar

Hammond J.O.S., Kendall J.M., Stuart G.W., Keir D., Ebinger C., Ayele A., and Belachew M. (2011) The nature of the crust beneath the afar triple junction: Evidence from receiver functions, Geochemistry, Geophysics, Geosystems,, Vol. 12, Q12004, https://doi.org/10.1029/2011GC003738.10.1029/2011GC003738 Search in Google Scholar

Heiskanen W. A., and Moritz H. (1967) Physical geodesy: W.H. Freeman and Company.10.1007/BF02525647 Search in Google Scholar

Hildenbrand T.G., Briesacher A., Flanagan G., Hinze W.J., Hittelman A.M., Keller G.R., Kucks R.P., Plouff D., Roest W., Seeley J., Smith D.A., and Webring M. (2002) Rationale and Operational Plan to Upgrade the U.S Gravity Database. USGS Open-File Report 02-463. Search in Google Scholar

Ince E.S., Barthelmes F., Reißland S., Elger K., Förste C., Flechtner F., Schuh H. (2019) ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services and future plans. - Earth System Science Data, 11, pp. 647-674, http://doi.org/10.5194/essd-11-647-2019.10.5194/essd-11-647-2019 Search in Google Scholar

Kivior I. and Boyd D. (1998) Interpretation of the aeromagnetic experimental survey in the Eromanga/Cooper basin. Canadian Journal of Exploration Geophysics, Vol. 34, No. 1 and 2, 58-66. Search in Google Scholar

Lavayssière A., Rychert C., Harmon N., Keir D., Hammond J.O., Kendall J.M., Doubre C., Leroy S. (2018) Imaging Lithospheric Discontinuities beneath the Northern East African Rift Using S-to-P Receiver Functions. Geochemistry, Geophysics, Geosystems, Vol. 19, No. 10, 4048-4062. https://doi.org/10.1029/2018gc00746310.1029/2018GC007463 Search in Google Scholar

Novák P., 2010. Direct modeling of the gravitational field using harmonic series. ActaGeodynamica et Geomaterialia, Vol. 7, No. 1, 35-47. Search in Google Scholar

Oliveira Jr., Vanderlei C., Uieda L, Hallam K., Barbosa A.T., and Valéria C.F. (2018) Code and data for “Should geophysicists use the gravity disturbance or the anomaly?” https://doi.org/10.5281/zenodo.1255306 Search in Google Scholar

Pavlis N.K., Holmes S. A., Kenyon S. C., and Factor J. K. (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of geophysical research: solid earth, 117(B4)10.1029/2011JB008916 Search in Google Scholar

Philippe N.N., Eliezer M.D., Théophile N.M. and Tabod C.T. (2006) Spectral analysis and gravity modelling in the Yagoua, Cameroon, sedimentary basin, GeofísicaInternacional, Vol. 45, No. 210.22201/igeof.00167169p.2006.45.3.206 Search in Google Scholar

Reigber C., Lühr H., and Schwintzer P. (2002) CHAMP mission status. Advances in Space Research, Vol. 30, No. 2, 129-134. https://doi.org/10.1016/S0273-1177(02)00276-410.1016/S0273-1177(02)00276-4 Search in Google Scholar

Rummel R., Balmino G., Johannessen J., Visser P., and Woodworth P. (2002) Dedicated gravity field missions-principles and aims, Journal of Geodynamics, Vol. 33, 3-20. Search in Google Scholar

Spector A. and Grant F.S. (1970) Statistical models for interpreting aeromagnetic data. Geophysics, Vol.35,293-302. 10.1190/1.1440092 Search in Google Scholar

Tapley B.D., Bettadpur S., Watkins M., and Reigber C. (2004) The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters, Vol. 31, L09607. https://doi.org/10.1029/2004GL019920 10.1029/2004GL019920 Search in Google Scholar

Yilmaz M., Turgut B., Gullu M., and Yilmaz I. (2017) The evaluation of high-degree geopotential models for regional geoid determination in Turkey, AKU Journal of Science and Engineering, Vol. 17, No. 1, 147-153. Search in Google Scholar

Yilmaz M., Turgut B., Gullu M., and Yilmaz I. (2016) Evaluation of recent global geopotential models by GNSS/Levelling data: Internal Aegean region. International Journal of Engineering and Geosciences, Vol. 1, No. 1, 15-19. https://doi.org/10.26833/ijeg.285221 10.26833/ijeg.285221 Search in Google Scholar

Zerihun G. (2017) Evaluation of Gravity Field Models: EIGEN-6C4 and GOCO03S combined with EGM08 using GNSS-Levelling, Unpublished Master thesis, Adama Science and Technology University, Adama, Ethiopia Search in Google Scholar

Zingerle P., Pail R., Gruber T., and Oikonomidou X. (2019) The experimental gravity field model XGM2019e. GFZ Data Services. https://doi.org/10.5880/ICGEM.2019.007 Search in Google Scholar

eISSN:
2083-6104
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Geosciences, other