Acceso abierto

Theoretical Problems Underlying Sprite Observations of the Planned Taranis Satellite Mission


Cite

Abestrobi. (2008). Own work, CC BY-SA 3.0,https://commons.wikimedia.org/w/index.php?curid=4262250.Search in Google Scholar

Aplin K.L., Harrison R.G., and Rycroft M.J. (2008). Investigating earth’s atmospheric electricity: A role model for planetary studies. Space Science Reviews, 137(1–4), 11–27. https://doi.org/10.1007/s11214-008-9372-x10.1007/s11214-008-9372-xOpen DOISearch in Google Scholar

Barrington-Leigh C.P., Inan U.S., and Stanley M.A. (2001). Identification of sprites and elves with intensified video and broadband array photometry. Journal of Geophysical Research: Space Physics, 106(A2), 1741–1750. https://doi.org/10.1029/2000JA00007310.1029/2000000073Open DOISearch in Google Scholar

Barrington-Leigh C.P., Inan U.S., Stanley M.A., and Cummer S.A. (1999). Sprites triggered by negative lightning discharges. Geophysical Research Letters, 26(24), 3605–3608. https://doi.org/10.1029/1999GL01069210.1029/1999GL010692Open DOISearch in Google Scholar

Bell T.F., Pasko V.P., and Inan U.S. (1995). Runaway electrons as a source of red sprites in the mesosphere. Geophysical Research Letters, 22(16), 2127–2130. https://doi.org/10.1029/95GL0223910.1029/95GL02239Open DOISearch in Google Scholar

Bell T.F., Reising S.C., and Inan U.S. (1998). Intense continuing currents following positive cloud-to-ground lightning associated with red sprites. Geophysical Research Letters, 25(8), 1285–1288. https://doi.org/10.1029/98GL0073410.1029/98GL00734Search in Google Scholar

Bethe H. (1930). Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Annalen Der Physik, 397(3), 325–400. https://doi.org/10.1002/andp.1930397030310.1002/andp.19303970303Open DOISearch in Google Scholar

Blanc E., Farges T., Brebion D., Labarthe A., and Melnikov V. (2006). Observations of Sprites From Space At the Nadir: The LSO (Lightning and Sprite Observations) Experiment on Board of the International Space Station. In M. Füllekrug (Ed.), Sprites, Elves and Intense Lightning Discharges (pp. 151–166). https://doi.org/10.1007/1-4020-4629-4_710.1007/1-4020-4629-4_7Open DOISearch in Google Scholar

Blanc E., Farges T., Roche R., Brebion D., Hua T., Labarthe A., and Melnikov V. (2004). Nadir observations of sprites from the International Space Station. Journal of Geophysical Research: Space Physics, 109(A2), 1–8. https://doi.org/10.1029/2003JA00997210.1029/2003009972Open DOISearch in Google Scholar

Blanc E., Le Mer-Dachard F., Ravel K., Sato M., Farges T., Hébert P., … Binet R. (2012). Taranis MCP: a joint instrument for accurate monitoring of transient luminous event in the upper atmosphere. In E. Armandillo, N. Karafolas, and B. Cugny (Eds.), International Conference on Space Optics—ICSO 2012 (Vol. 10564, p. 34). https://doi.org/10.1117/12.230904810.1117/12.2309048Open DOISearch in Google Scholar

Blanc E., Lefeuvre F., Roussel-Dupré R., and Sauvaud J.-A. (2007). TARANIS: A microsatellite project dedicated to the study of impulsive transfers of energy between the Earth atmosphere, the ionosphere, and the magnetosphere. Advances in Space Research, 40(8), 1268–1275. https://doi.org/10.1016/j.asr.2007.06.03710.1016/j.asr.2007.06.037Search in Google Scholar

Błęcki J., and Mizerski K. (2018). Subtle structure of streamers under conditions resembling those of Transient Luminous Events. Archives of Mechanics, 70(6), 1–16. https://doi.org/10.24423/aom.3009Search in Google Scholar

Błęcki J., Parrot M., and Wronowski R. (2009). ELF and VLF signatures of sprites registered onboard the low altitude satellite DEMETER. Annales Geophysicae, 27(6), 2599–2605. https://doi.org/10.5194/angeo-27-2599-200910.5194/angeo-27-2599-2009Open DOISearch in Google Scholar

Boccippio D.J., Goodman S.J., and Heckman S.J. (2002). Regional Differences in Tropical Lightning Distributions. Journal of Applied Meteorology, 39(12), 2231–2248. https://doi.org/10.1175/1520-0450(2001)040<2231:rditld>2.0.co;210.1175/1520-0450(2001)040<2231:rditld>2.0.co;2Open DOISearch in Google Scholar

Boccippio D.J., Williams E.R., Heckman S.J., Lyons W.A., Baker I.T., and Boldi R. (1995). Sprites, ELF Transients, and Positive Ground Strokes. Science, 269(5227), 1088–1091. https://doi.org/10.1126/science.269.5227.108810.1126/.269.5227.1088Open DOISearch in Google Scholar

Briels T., van Veldhuizen E., and Ebert U. (2008). Positive streamers in air and nitrogen of varying density: Experiments on similarity laws. Journal of Physics D: Applied Physics, 41(23). https://doi.org/10.1088/0022-3727/41/23/23400810.1088/0022-3727/41/23/234008Open DOISearch in Google Scholar

Bugaev S.P., Litvinov E.A., Mesyats G.A., and Proskurovskii D.I. (1975). Explosive emission of electrons. Uspekhi Fizicheskih Nauk, 115(1), 101. https://doi.org/10.3367/UFNr.0115.197501d.010110.3367/UFNr.0115.197501d.0101Open DOISearch in Google Scholar

Carlson B., Lehtinen N., and Inan U.S. (2008). Runaway relativistic electron avalanche seeding in the Earth’s atmosphere. Journal of Geophysical Research: Space Physics, 113(10), 1–5. https://doi.org/10.1029/2008JA01321010.1029/2008JA013210Search in Google Scholar

Celestin S., Xu W., and Pasko V.P. (2015). Variability in fluence and spectrum of high-energy photon bursts produced by lightning leaders. Journal of Geophysical Research A: Space Physics, 120(12), 10712–10723. https://doi.org/10.1002/2015JA02141010.1002/2015021410Open DOISearch in Google Scholar

Chanrion O., Neubert T., Lundgaard Rasmussen I., Stoltze C., Tcherniak D., Jessen N.C., … Lorenzen M. (2019). The Modular Multispectral Imaging Array (MMIA) of the ASIM Payload on the International Space Station. Space Science Reviews, 215(4). https://doi.org/10.1007/s11214-019-0593-y10.1007/s11214-019-0593-yOpen DOISearch in Google Scholar

Chanrion O., Neubert T., Mogensen A., Yair Y., Stendel M., Singh R., and Siingh D. (2017). Profuse activity of blue electrical discharges at the tops of thunderstorms. Geophysical Research Letters, 44(1), 496–503. https://doi.org/10.1002/2016GL07131110.1002/2016GL071311Open DOISearch in Google Scholar

Chen A.B., Kuo C.L., Lee Y.J., Su H. T., Hsu R. R., Chern J.L., … Lee L.C. (2008). Global distributions and occurrence rates of transient luminous events. Journal of Geophysical Research: Space Physics, 113(8), 1–8. https://doi.org/10.1029/2008JA01310110.1029/2008JA013101Search in Google Scholar

Chern J.-S., Wu A.-M., and Lin S.-F. (2014). Globalization extension of transient luminous events from FORMOSAT-2 observation. Acta Astronautica, 98(5), 64–70. https://doi.org/10.1016/j.actaastro.2014.01.01410.1016/j.actaastro.2014.01.014Open DOISearch in Google Scholar

Christian H.J., Blakeslee R.J., and Goodman S.J. (1989). The detection of lightning from geostationary orbit. Journal of Geophysical Research, 94(D11), 13329. https://doi.org/10.1029/JD094iD11p1332910.1029/JD094iD11p13329Open DOISearch in Google Scholar

Colman J.J., Roussel-Dupré R., and Triplett L. (2010). Temporally self-similar electron distribution functions in atmospheric breakdown: The thermal runaway regime. Journal of Geophysical Research: Space Physics, 115(A3), n/a-n/a. https://doi.org/10.1029/2009JA01450910.1029/2009014509Open DOISearch in Google Scholar

Connaughton V., Briggs M.S., Xiong S., Dwyer J.R., Hutchins M.L., Grove J.E., … Wilson-Hodge C. (2013). Radio signals from electron beams in terrestrial gamma ray flashes. Journal of Geophysical Research: Space Physics, 118(5), 2313–2320. https://doi.org/10.1029/2012JA01828810.1029/2012018288Open DOISearch in Google Scholar

Cooray V. (2014). The Lightning Flash. In V. Cooray (Ed.), Lightning Protection for People and Property. https://doi.org/10.1007/978-1-4684-6548-8_410.1007/978-1-4684-6548-8_4Open DOISearch in Google Scholar

Cummer S.A. (1997). Lightning and Ionospheric Remote Sensing Using Vlf / Elf Radio Atmospherics.10.1029/98RS02381Search in Google Scholar

Cummer S.A. (2003). Current moment in sprite-producing lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 65(5), 499–508. https://doi.org/10.1016/S1364-6826(02)00318-810.1016/S1364-6826(02)00318-8Open DOISearch in Google Scholar

Cummer S.A., Frey H.U., Mende S.B., Hsu R.R., Su H.T., Chen A.B., … Takahashi Y. (2006). Simultaneous radio and satellite optical measurements of high-altitude sprite current and lightning continuing current. Journal of Geophysical Research: Space Physics, 111(10), 1–6. https://doi.org/10.1029/2006JA01180910.1029/2006JA011809Search in Google Scholar

Cummer S.A., Inan U.S., Bell T.F., and Barrington-Leigh C.P. (1998). ELF radiation produced by electrical currents in sprites. Geophysical Research Letters, 25(8), 1281–1284. https://doi.org/10.1029/98GL5093710.1029/98GL50937Search in Google Scholar

Cummer S.A., Jaugey N., Li J., Lyons W.A., Nelson T.E., and Gerken E.A. (2006). Submillisecond imaging of sprite development and structure. Geophysical Research Letters, 33(4), 30–33. https://doi.org/10.1029/2005GL02496910.1029/2005GL024969Open DOISearch in Google Scholar

Cummer S.A., and Stanley M.A. (1999). Submillisecond resolution lightning currents and sprite development: Observations and implications. Geophysical Research Letters, 26(20), 3205–3208. https://doi.org/10.1029/1999GL00363510.1029/1999GL003635Open DOISearch in Google Scholar

Drüe C., Hauf T., Finke U., Keyn S., and Kreyer O. (2007). Comparison of a SAFIR lightning detection network in northern Germany to the operational BLIDS network. Journal of Geophysical Research, 112(D18), D18114. https://doi.org/10.1029/2006JD00768010.1029/2006JD007680Open DOISearch in Google Scholar

Dwyer J.R., and Babich L. (2012). Reply to comment by A.V. Gurevich et al. On “Low-energy electron production by relativistic runaway electron avalanches in air”. Journal of Geophysical Research: Space Physics, 117(A4), n/a-n/a. https://doi.org/10.1029/2011JA01748710.1029/2011017487Open DOISearch in Google Scholar

Dwyer J.R., Smith D.M., and Cummer S.A. (2012). High-energy atmospheric physics: Terrestrial gamma-ray flashes and related phenomena. Space Science Reviews, 173(1–4), 133–196. https://doi.org/10.1007/s11214-012-9894-010.1007/s11214-012-9894-0Open DOISearch in Google Scholar

Dwyer J.R., and Uman M.A. (2014). The physics of lightning. Physics Reports, 534(4), 147–241. https://doi.org/10.1016/j.physrep.2013.09.00410.1016/j.physrep.2013.09.004Open DOISearch in Google Scholar

Ebert U., Montijn C., Briels T., Hundsdorfer W., Meulenbroek B., Rocco A., and Veldhuizen E.M. van. (2006). The multiscale nature of streamers. Plasma Sources Science and Technology, 15(2), S118–S129. https://doi.org/10.1088/0963-0252/15/2/S1410.1088/0963-0252/15/2/S14Open DOISearch in Google Scholar

Ebert U., Nijdam S., Li C., Luque A., Briels T., and van Veldhuizen E. (2010). Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning. Journal of Geophysical Research: Space Physics, 115(A7), 1–13. https://doi.org/10.1029/2009ja01486710.1029/2009ja014867Open DOISearch in Google Scholar

Fishman G.J., Bhat P. N., Mallozzi R., Horack J. M., Koshut T., Kouveliotou C., … Christian H.J. (1994). Discovery of intense gamma-ray flashes of atmospheric origin. Science, 264(5163), 1313–1316. https://doi.org/10.1126/science.264.5163.131310.1126/.264.5163.1313Open DOISearch in Google Scholar

Franz R.C., Nemzek R.J., and Winckler J.R. (1990). Television image of a large upward electrical discharge above a thunderstorm system. Science. https://doi.org/10.1126/science.249.4964.4810.1126/.249.4964.48Open DOISearch in Google Scholar

Friis-Christensen E., Lühr H., and Hulot G. (2006). Swarm: A constellation to study the Earth’s magnetic field. Earth, Planets and Space, 58(4), 351–358. https://doi.org/10.1186/BF0335193310.1186/BF03351933Open DOISearch in Google Scholar

Füllekrug M., Hanuise C., and Parrot M. (2011). Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. Atmospheric Chemistry and Physics, 11(2), 667–673. https://doi.org/10.5194/acp-11-667-201110.5194/acp-11-667-2011Open DOISearch in Google Scholar

Füllekrug M., Moudry D.R., Dawes G., and Sentman D.D. (2001). Mesospheric sprite current triangulation. Journal of Geophysical Research: Atmospheres, 106(D17), 20189–20194. https://doi.org/10.1029/2001JD90007510.1029/2001JD900075Open DOISearch in Google Scholar

Füllekrug M., Parrot M., Ash M., Astin I., Williams P., and Talhi R. (2009). Transionospheric attenuation of 100 kHz radio waves inferred from satellite and ground based observations. Geophysical Research Letters, 36(6), 1–5. https://doi.org/10.1029/2008GL03698810.1029/2008GL036988Open DOISearch in Google Scholar

Füllekrug M., Roussel-Dupré R., Symbalisty E.M.D., Chanrion O., Odzimek A., van der Velde O.A., and Neubert T. (2010). Relativistic runaway breakdown in low-frequency radio. Journal of Geophysical Research: Space Physics, 115(1), 1–10. https://doi.org/10.1029/2009JA01446810.1029/2009014468Open DOISearch in Google Scholar

Füllekrug M., Roussel-Dupré R., Symbalisty E.M.D., Colman J.J., Chanrion O., Soula S., … Neubert T. (2011). Relativistic electron beams above thunderclouds. Atmospheric Chemistry and Physics, 11(15), 7747–7754. https://doi.org/10.5194/acp-11-7747-201110.5194/acp-11-7747-2011Open DOISearch in Google Scholar

Gerken E.A., and Inan U.S. (2002). A survey of streamer and diffuse glow dynamics observed in sprites using telescopic imagery. Journal of Geophysical Research: Space Physics, 107(A11), 1–12. https://doi.org/10.1029/2002JA00924810.1029/2002009248Open DOISearch in Google Scholar

Gerken E.A., and Inan U.S. (2003). Observations of decameter-scale morphologies in sprites. Journal of Atmospheric and Solar-Terrestrial Physics, 65(5), 567–572. https://doi.org/10.1016/S1364-6826(02)00333-410.1016/S1364-6826(02)00333-4Open DOISearch in Google Scholar

Gerken E.A., Inan U.S., and Barrington-Leigh C.P. (2000). Telescopic imaging of sprites. Geophysical Research Letters, 27(17), 2637–2640. https://doi.org/10.1029/2000GL00003510.1029/2000GL000035Open DOISearch in Google Scholar

Gurevich A.V., Milikh G.M., and Roussel-Dupré R. (1992). Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Physics Letters A, 165(5–6), 463–468. https://doi.org/10.1016/0375-9601(92)90348-P10.1016/0375-9601(92)90348-Open DOISearch in Google Scholar

Gurevich A.V., and Zybin K.P. (2001). Runaway breakdown and electric discharges in thunderstorms. Uspekhi Fizicheskih Nauk, 171(11), 1177. https://doi.org/10.3367/ufnr.0171.200111b.117710.3367/ufnr.0171.200111b.1177Open DOISearch in Google Scholar

Hess V. (1912). Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Physikalische Zeitschrift 13, 1084–1091.Search in Google Scholar

Iudin D.I., Davydenko S.S., Gotlib V.M., Dolgonosov M.S., and Zelenyi L.M. (2018). Physics of lightning: New model approaches and prospects of the satellite observations. Uspekhi Fizicheskih Nauk, 188(08), 850–864. https://doi.org/10.3367/ufnr.2017.04.03822110.3367/UFNr.2017.04.038221Search in Google Scholar

Jacobson A.R., Holzworth R.H., and Shao X.M. (2011). Observations of multi-microsecond VHF pulsetrains in energetic intracloud lightning discharges. Annales Geophysicae, 29(9), 1587–1604. https://doi.org/10.5194/angeo-29-1587-201110.5194/angeo-29-1587-2011Open DOISearch in Google Scholar

Jacobson A.R., and Light T.E.L. (2003). Bimodal radio frequency pulse distribution of intracloud-lightning signals recorded by the FORTE satellite. Journal of Geophysical Research: Atmospheres, 108(D9), n/a-n/a. https://doi.org/10.1029/2002jd00261310.1029/2002jd002613Open DOISearch in Google Scholar

Jehl A., Farges T., and Blanc E. (2013). Color pictures of sprites from non-dedicated observation on board the International Space Station. Journal of Geophysical Research: Space Physics, 118(1), 454–461. https://doi.org/10.1029/2012JA01814410.1029/2012018144Open DOISearch in Google Scholar

Johnson M.P., and Inan U.S. (2000). Sferic clusters associated with early/Fast VLF events. Geophysical Research Letters, 27(9), 1391–1394. https://doi.org/10.1029/1999GL01075710.1029/1999GL010757Open DOISearch in Google Scholar

Kammae T., Stenbaek-Nielsen H.C., McHarg M.G., and Haaland R.K. (2012). Diameter-speed relation of sprite streamers. Journal of Physics D: Applied Physics, 45(27). https://doi.org/10.1088/0022-3727/45/27/27520310.1088/0022-3727/45/27/275203Open DOISearch in Google Scholar

Kochkin P., Lehtinen N., Van Deursen A.P.J., and Østgaard N. (2016). Pilot system development in metre-scale laboratory discharge. Journal of Physics D: Applied Physics, 49(42). https://doi.org/10.1088/0022-3727/49/42/42520310.1088/0022-3727/49/42/425203Open DOISearch in Google Scholar

Kosar B.C., Liu N., and Rassoul H.K. (2012). Luminosity and propagation characteristics of sprite streamers initiated from small ionospheric disturbances at subbreakdown conditions. Journal of Geophysical Research: Space Physics, 117(8), 1–9. https://doi.org/10.1029/2012JA01763210.1029/2012017632Open DOISearch in Google Scholar

Kosar B.C., Liu N., and Rassoul H.K. (2013). Formation of sprite streamers at subbreakdown conditions from ionospheric inhomogeneities resembling observed sprite halo structures. Geophysical Research Letters, 40(23), 6282–6287. https://doi.org/10.1002/2013GL05829410.1002/2013GL058294Open DOISearch in Google Scholar

Kudintseva I.G., Nickolaenko A.P., and Hayakawa M. (2010). Transient Electric Field in the Mesosphere above a Γ-shape Lightning Stroke. Surveys in Geophysics, 31(4), 427–448. https://doi.org/10.1007/s10712-010-9095-x10.1007/s10712-010-9095-xOpen DOISearch in Google Scholar

Kulak A., Kubisz J., Klucjasz S., Michalec A., Mlynarczyk J., Nieckarz Z., … Zieba S. (2014). Extremely low frequency electromagnetic field measurements at the Hylaty station and methodology of signal analysis. Radio Science, 49(6), 361–370. https://doi.org/10.1002/2014RS00540010.1002/2014RS005400Open DOISearch in Google Scholar

Lang T.J., Rutledge S.A., and Wiens K.C. (2004). Origins of positive cloud-to-ground lightning flashes in the stratiform region of a mesoscale convective system. Geophysical Research Letters, 31(10). https://doi.org/10.1029/2004GL01982310.1029/2004GL019823Search in Google Scholar

Lefeuvre F., Blanc E., Pinçon J.-L., Roussel-Dupré R., Lawrence D., Sauvaud J.-A., … Lagoutte D. (2008). TARANIS—A Satellite Project Dedicated to the Physics of TLEs and TGFs. Space Science Reviews, 137(1–4), 301–315. https://doi.org/10.1007/s11214-008-9414-410.1007/s11214-008-9414-4Open DOISearch in Google Scholar

Lefeuvre F., Marshall R.A., Pinçon J.-L., Inan U.S., Lagoutte D., Parrot M., and Berthelier J.J. (2009). On remote sensing of transient luminous events parent lightning discharges by ELF/VLF wave measurements on board a satellite. Journal of Geophysical Research: Space Physics, 114(9), 1–13. https://doi.org/10.1029/2009JA01415410.1029/2009014154Open DOISearch in Google Scholar

Lehtinen N., Walt M., Inan U.S., Bell T.F., and Pasko V.P. (1996). γ-Ray emission produced by a relativistic beam of runaway electrons accelerated by quasi-electrostatic thundercloud fields. Geophysical Research Letters, 23(19), 2645–2648. https://doi.org/10.1029/96GL0257310.1029/96GL02573Open DOISearch in Google Scholar

Li J., Cummer S.A., Lyons W.A., and Nelson T.E. (2008). Coordinated analysis of delayed sprites with high-speed images and remote electromagnetic fields. Journal of Geophysical Research Atmospheres, 113(20), 1–11. https://doi.org/10.1029/2008JD01000810.1029/2008JD010008Open DOISearch in Google Scholar

Liu N., Dwyer J.R., and Cummer S.A. (2017). Elves Accompanying Terrestrial Gamma Ray Flashes. Journal of Geophysical Research: Space Physics, 122(10), 10,563-10,576. https://doi.org/10.1002/2017JA02434410.1002/2017JA024344Search in Google Scholar

Liu N., Dwyer J.R., Stenbaek-Nielsen H.C., and McHarg M.G. (2015). Sprite streamer initiation from natural mesospheric structures. Nature Communications, 6(May), 1–9. https://doi.org/10.1038/ncomms854010.1038/ncomms854026118893Open DOISearch in Google Scholar

Liu N., Kosar B.C., Sadighi S., Dwyer J.R., and Rassoul H.K. (2012). Formation of streamer discharges from an isolated ionization column at subbreakdown conditions. Physical Review Letters, 109(2). https://doi.org/10.1103/PhysRevLett.109.02500210.1103/PhysRevLett.109.02500223030169Open DOISearch in Google Scholar

Liu N., and Pasko V.P. (2004). Effects of photoionization on propagation and branching of positive and negative streamers in sprites. Journal of Geophysical Research: Space Physics, 109(A4), 1–18. https://doi.org/10.1029/2003JA01006410.1029/2003010064Open DOISearch in Google Scholar

Lu G., Cummer S.A., Li J., Zigoneanu L., Lyons W.A., Stanley M.A., … Samaras T. (2013). Coordinated observations of sprites and in-cloud lightning flash structure. Journal of Geophysical Research Atmospheres, 118(12), 6607–6632. https://doi.org/10.1002/jgrd.5045910.1002/jgrd.50459Open DOISearch in Google Scholar

Luque A., and Ebert U. (2009). Emergence of sprite streamers from screening-ionization waves in the lower ionosphere. Nature Geoscience, 2(11), 757–760. https://doi.org/10.1038/ngeo66210.1038/ngeo662Open DOISearch in Google Scholar

Luque A., and Gordillo-Vázquez F.J. (2011). Sprite beads originating from inhomogeneities in the mesospheric electron density. Geophysical Research Letters, 38(4), 1–5. https://doi.org/10.1029/2010GL04640310.1029/2010GL046403Open DOISearch in Google Scholar

Lyu F., Cummer S.A., Krehbiel P.R., Rison W., Briggs M.S., Cramer E., … Stanbro M. (2018). Very High Frequency Radio Emissions Associated With the Production of Terrestrial Gamma-Ray Flashes. Geophysical Research Letters, 45(4), 2097–2105. https://doi.org/10.1002/2018GL07710210.1002/2018GL077102Open DOISearch in Google Scholar

Marisaldi M., Fuschino F., Labanti C., Galli M., Longo F., Del Monte E., … Salotti L. (2010). Detection of terrestrial gamma ray flashes up to 40 MeV by the AGILE satellite. Journal of Geophysical Research: Space Physics, 115(A3), n/a-n/a. https://doi.org/10.1029/2009JA01450210.1029/2009014502Open DOISearch in Google Scholar

Marisaldi M., Fuschino F., Tavani M., Dietrich S., Price C., Galli M., … Verrecchia F. (2014). Properties of terrestrial gamma ray flashes detected by AGILE MCAL below 30 MeV. Journal of Geophysical Research: Space Physics, 119, 1337–1355. https://doi.org/10.1002/2013JA01930110.1002/2013019301Open DOISearch in Google Scholar

Marshall R.A., and Inan U.S. (2005). High-speed telescopic imaging of sprites. Geophysical Research Letters, 32(5), 1–4. https://doi.org/10.1029/2004GL02198810.1029/2004GL021988Open DOISearch in Google Scholar

Marshall T.C., and Stolzenburg M. (2001). Voltages inside and just above thunderstorms. Journal of Geophysical Research: Atmospheres, 106(D5), 4757–4768. https://doi.org/10.1029/2000JD90064010.1029/2000JD900640Open DOISearch in Google Scholar

Mende S.B., Chang Y.S., Chen A.B., Frey H.U., Fukunishi H., Geller S.P., … Takahashi Y. (2006). SPACECRAFT BASED STUDIES OF TRANSIENT LUMINOUS EVENTS. In M. Fullekrug (Ed.), Sprites, Elves and Intense Lightning Discharges (pp. 123–149). https://doi.org/10.1007/1-4020-4629-4_610.1007/1-4020-4629-4_6Open DOISearch in Google Scholar

Mlynarczyk J., Bór J., Kulak A., Popek M., and Kubisz J. (2015). An unusual sequence of sprites followed by a secondary TLE: An analysis of ELF radio measurements and optical observations. Journal of Geophysical Research: Space Physics, 120(3), 2241–2254. https://doi.org/10.1002/2014JA02078010.1002/2014020780Open DOISearch in Google Scholar

Moss G.D., Pasko V.P., Liu N., and Veronis G. (2006). Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders. Journal of Geophysical Research: Space Physics, 111(2), 1–37. https://doi.org/10.1029/2005JA01135010.1029/2005011350Open DOISearch in Google Scholar

Nag A., and Rakov V.A. (2012). Positive lightning: An overview, new observations, and inferences. 117(January), 1–20. https://doi.org/10.1029/2012JD01754510.1029/2012JD017545Open DOISearch in Google Scholar

Nagano M., and Watson A.A. (2000). Observations and implications of the ultrahigh-energy cosmic rays. Reviews of Modern Physics, 72(3), 689–732. https://doi.org/10.1103/RevModPhys.72.68910.1103/RevModPhys.72.689Open DOISearch in Google Scholar

Neubert T., Allin T.H., Stenbaek-Nielsen H., and Blanc E. (2001). Sprites Over Europe. Geophysical Research Letters, 28(18), 3585–3588. https://doi.org/10.1029/2001GL01342710.1029/2001GL013427Open DOISearch in Google Scholar

Neubert T., Østgaard N., Reglero V., Blanc E., Chanrion O., Oxborrow C.A., … Bhanderi D. D.V. (2019). The ASIM Mission on the International Space Station. Space Science Reviews, 215(2). https://doi.org/10.1007/s11214-019-0592-z10.1007/s11214-019-0592-zOpen DOISearch in Google Scholar

Neubert T., Rycroft M. J., Farges T., Blanc E., Chanrion O., Arnone E., … Crosby N. (2008). Recent results from studies of electric discharges in the mesosphere. In Surveys in Geophysics (Vol. 29). https://doi.org/10.1007/s10712-008-9043-110.1007/s10712-008-9043-1Open DOISearch in Google Scholar

Ohkubo A., Fukunishi H., Takahashi Y., and Adachi T. (2005). VLF/ELF sferic evidence for incloud discharge activity producing sprites. Geophysical Research Letters, 32(4), 1–4. https://doi.org/10.1029/2004GL02194310.1029/2004GL021943Open DOISearch in Google Scholar

Oreshkin E.V., Barengolts S.A., Chaikovsky S.A., and Oreshkin V.I. (2012). Simulation of the runaway electron beam formed in a discharge in air at atmospheric pressure. Physics of Plasmas, 19(4), 043105. https://doi.org/10.1063/1.369534910.1063/1.3695349Search in Google Scholar

Østgaard N., Balling J.E., Bjørnsen T., Brauer P., Budtz-Jørgensen C., Bujwan W., … Yang S. (2019). The Modular X- and Gamma-Ray Sensor (MXGS) of the ASIM Payload on the International Space Station. Space Science Reviews, Vol. 215. https://doi.org/10.1007/s11214-018-0573-710.1007/s11214-018-0573-7Open DOISearch in Google Scholar

Paiva G.S., Pavao A.C., and Bastos C.C. (2009). ‘Seed’ electrons from muon decay for runaway mechanism in the terrestrial gamma ray flash production. Journal of Geophysical Research Atmospheres, 114(3). https://doi.org/10.1029/2008JD01046810.1029/2008JD010468Open DOISearch in Google Scholar

Parrot M., Berthelier J.J., Lebreton J.P., Treumann R.A., and Rauch J.-L. (2008). DEMETER observations of EM emissions related to thunderstorms. Space Science Reviews, 137(1–4), 511–519. https://doi.org/10.1007/s11214-008-9347-y10.1007/s11214-008-9347-yOpen DOISearch in Google Scholar

Parrot M., Sauvaud J.-A., Soula S., Pinçon J.-L., and van der Velde O.A. (2013). Ionospheric density perturbations recorded by DEMETER above intense thunderstorms. Journal of Geophysical Research: Space Physics, 118(8), 5169–5176. https://doi.org/10.1002/jgra.5046010.1002/jgra.50460Search in Google Scholar

Pasko V. P. (2006). Theoretical Modeling of Sprites and Jets. In M. et al Füllekrug (Ed.), Sprites, Elves and Intense Lightning Discharges (pp. 253–311). https://doi.org/10.1007/1-4020-4629-4_1210.1007/1-4020-4629-4_12Open DOISearch in Google Scholar

Pasko V.P. (2007). Red sprite discharges in the atmosphere at high altitude: The molecular physics and the similarity with laboratory discharges. Plasma Sources Science and Technology, 16(1), 13–29. https://doi.org/10.1088/0963-0252/16/1/S0210.1088/0963-0252/16/1/S02Open DOISearch in Google Scholar

Pasko V.P., Inan U.S., Bell T.F., and Reising S.C. (1998). Mechanism of ELF radiation from sprites. Geophysical Research Letters, 25(18), 3493–3496. https://doi.org/10.1029/98GL0263110.1029/98GL02631Open DOISearch in Google Scholar

Pasko V.P., Inan U.S., Bell T.F., and Taranenko Y. (1997). Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. Journal of Geophysical Research A: Space Physics, 102(A3), 4529–4561. https://doi.org/10.1029/96JA0352810.1029/9603528Open DOISearch in Google Scholar

Pasko V.P., Yair Y., and Kuo C.L. (2012). Lightning related transient luminous events at high altitude in the earth’s atmosphere: Phenomenology, mechanisms and effects. In Space Science Reviews (Vol. 168). https://doi.org/10.1007/s11214-011-9813-910.1007/s11214-011-9813-9Open DOISearch in Google Scholar

Qin J., Celestin S., and Pasko V.P. (2012). Low frequency electromagnetic radiation from sprite streamers. Geophysical Research Letters, 39(22), 1–5. https://doi.org/10.1029/2012GL05399110.1029/2012GL053991Open DOISearch in Google Scholar

Raizer Y.P. (1991). Gas Discharge Physics (J. E. Allen, Ed.). https://doi.org/10.1007/978-3-642-61247-310.1007/978-3-642-61247-3Open DOISearch in Google Scholar

Rakov V.A. (2013). The Physics of Lightning. (April), 701–729. https://doi.org/10.1007/s10712-013-9230-610.1007/s10712-013-9230-6Open DOISearch in Google Scholar

Rakov V.A., and Uman M.A. (2003). Lightning: Physics and Effects. Cambridge, United Kingdom: Cambridge University Press.10.1017/CBO9781107340886Search in Google Scholar

Roberts O.J., Fitzpatrick G., Stanbro M., McBreen S., Briggs M.S., Holzworth R.H., … Mailyan B.G. (2018). The First Fermi-GBM Terrestrial Gamma Ray Flash Catalog. Journal of Geophysical Research: Space Physics, 123(5), 4381–4401. https://doi.org/10.1029/2017JA02483710.1029/2017024837Open DOISearch in Google Scholar

Roussel-Dupré R., Symbalisty E.M.D., Taranenko Y., and Yukhimuk V. (1998). Simulations of high-altitude discharges initiated by runaway breakdown. Journal of Atmospheric and Solar-Terrestrial Physics, 60(7–9), 917–940. https://doi.org/10.1016/S1364-6826(98)00028-510.1016/S1364-6826(98)00028-5Open DOISearch in Google Scholar

Rutheford E. (1911). The Scattering of αand βParticles by Matter and the Structure of the Atom. Philosophical Magazine, 21(6), 669–688.10.1080/14786440508637080Search in Google Scholar

Rycroft M.J., and Odzimek A. (2010). Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit. Journal of Geophysical Research: Space Physics, 115(A6), n/a-n/a. https://doi.org/10.1029/2009JA01475810.1029/2009014758Open DOISearch in Google Scholar

São Sabbas F.T., Sentman D.D., Wescott E.M., Pinto O., Mendes O., and Taylor M.J. (2003). Statistical analysis of space-time relationships between sprites and lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 65(5), 525–535. https://doi.org/10.1016/S1364-6826(02)00326-710.1016/S1364-6826(02)00326-7Open DOISearch in Google Scholar

Sarria D., Lebrun F., Blelly P.L., Chipaux R., Laurent P., Sauvaud J.-A., … Lindsey-Clark M. (2017). TARANIS XGRE and IDEE detection capability of terrestrial gamma-ray flashes and associated electron beams. Geoscientific Instrumentation, Methods and Data Systems, 6(2), 239–256. https://doi.org/10.5194/gi-6-239-201710.5194/gi-6-239-2017Open DOISearch in Google Scholar

Sato M., Ushio T., Morimoto T., Kikuchi M., Kikuchi H., Adachi T., … Kawasaki Z.I. (2015). Overview and early results of the global lightning and sprite measurements mission. Journal of Geophysical Research, 120(9), 3822–3851. https://doi.org/10.1002/2014JD02242810.1002/2014JD022428Open DOISearch in Google Scholar

Sentman D.D., Wescott E.M., Osborne D.L., Hampton D.L., and Heavner M.J. (1995). Preliminary results from the Sprites94 Aircraft Campaign: 1. Red sprites. Geophysical Research Letters, 22(10), 1205–1208. https://doi.org/10.1029/95GL0058310.1029/95GL00583Search in Google Scholar

Stanley M.A., Brook M., Krehbiel P.R., and Cummer S.A. (2000). Detection of daytime sprites via a unique sprite ELF signature. Geophysical Research Letters, 27(6), 871–874. https://doi.org/10.1029/1999GL01076910.1029/1999GL010769Open DOISearch in Google Scholar

Stenbaek-Nielsen H.C., Kammae T., McHarg M.G., and Haaland R.K. (2013). High-Speed Observations of Sprite Streamers. Surveys in Geophysics, 34(6), 769–795. https://doi.org/10.1007/s10712-013-9224-410.1007/s10712-013-9224-4Open DOISearch in Google Scholar

Stenbaek-Nielsen H.C., and McHarg M.G. (2008). High time-resolution sprite imaging: Observations and implications. Journal of Physics D: Applied Physics, 41(23). https://doi.org/10.1088/0022-3727/41/23/23400910.1088/0022-3727/41/23/234009Open DOISearch in Google Scholar

Stolzenburg M., and Marshall T.C. (2008). Charge Structure and Dynamics in Thunderstorms. (November 2007), 355–372. https://doi.org/10.1007/s11214-008-9338-z10.1007/s11214-008-9338-zOpen DOISearch in Google Scholar

Stolzenburg M., Rust W.D., and Marshall T.C. (1998). Electrical structure in thunderstorm convective regions: 3. Synthesis. Journal of Geophysical Research: Atmospheres, 103(D12), 14097–14108. https://doi.org/10.1029/97JD0354510.1029/97JD03545Open DOISearch in Google Scholar

Surkov V.V., and Hayakawa M. (2012). Underlying mechanisms of transient luminous events: A review. Annales Geophysicae, 30(8), 1185–1212. https://doi.org/10.5194/angeo-30-1185-201210.5194/angeo-30-1185-2012Search in Google Scholar

Taranenko Y., and Roussel-Dupré R. (1996). High altitude discharges and gamma-ray flashes: A manifestation of runaway air breakdown. Geophysical Research Letters, 23(5), 571–574. https://doi.org/10.1029/95GL0350210.1029/95GL03502Open DOISearch in Google Scholar

Taylor W.L., and Sao K. (1970). ELF Attenuation Rates and Phase Velocities Observed From Slow-Tail Components of Atmospherics. Radio Science, 5(12), 1453–1460. https://doi.org/10.1029/RS005i012p0145310.1029/RS005i012p01453Open DOISearch in Google Scholar

van der Velde O.A., Mika Á., Soula S., Haldoupis C., Neubert T., and Inan U.S. (2006). Observations of the relationship between sprite morphology and in-cloud lightning processes. Journal of Geophysical Research Atmospheres, 111(15), 1–8. https://doi.org/10.1029/2005JD00687910.1029/2005JD006879Open DOISearch in Google Scholar

Wescott E.M., Sentman D.D., Osborne D.L., Hampton D.L., and Heavner M.J. (1995). Preliminary results from the Sprites94 Aircraft Campaign: 2. Blue jets. Geophysical Research Letters, 22(10), 1209–1212. https://doi.org/10.1029/95GL0058210.1029/95GL00582Search in Google Scholar

Wescott E.M., Stenbaek-Nielsen H.C., Sentman D.D., Heavner M.J., Moudry D.R., and Sabbas F. T. S. (2001). Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors. Journal of Geophysical Research: Space Physics, 106(A6), 10467–10477. https://doi.org/10.1029/2000ja00018210.1029/2000ja000182Open DOISearch in Google Scholar

Wilson C.T.R. (1924). Electric Field of a Thundercloud and Some of Its Effects. Proceedings of the Physical Society of London, 37(1), 32D-37D. https://doi.org/10.1088/1478-7814/37/1/31410.1088/1478-7814/37/1/314Open DOISearch in Google Scholar

Wilson C.T.R. (1925). The Acceleration of beat-particles in Strong Electric Fields such as those of Thunderclouds. Mathematical Proceedings of the Cambridge Philosophical Society, 22(4), 534–538. https://doi.org/10.1017/S030500410000323610.1017/S0305004100003236Open DOISearch in Google Scholar

Winckler J.R., Lyons W.A., Nelson T.E., and Nemzek R.J. (1996). New high-resolution ground-based studies of sprites. Journal of Geophysical Research: Atmospheres, 101(D3), 6997–7004. https://doi.org/10.1029/95JD0344310.1029/95JD03443Open DOISearch in Google Scholar

Xu W., Celestin S., Pasko V.P., and Marshall R.A. (2017). A novel type of transient luminous event produced by terrestrial gamma-ray flashes. Geophysical Research Letters, 44(5), 2571–2578. https://doi.org/10.1002/2016GL07240010.1002/2016GL072400Open DOISearch in Google Scholar

Yair Y. (2004). New observations of sprites from the space shuttle. Journal of Geophysical Research, 109(D15), D15201. https://doi.org/10.1029/2003JD00449710.1029/2003JD004497Open DOISearch in Google Scholar

Yukhimuk V., Roussel-Dupré R., Symbalisty E.M.D., and Taranenko Y. (1998). Optical characteristics of red sprites produced by runaway air breakdown. Journal of Geophysical Research: Atmospheres, 103(D10), 11473–11482. https://doi.org/10.1029/98JD0034810.1029/98JD00348Search in Google Scholar

Zabotin N.A., and Wright J.W. (2001). Role of meteoric dust in sprite formation. Geophysical Research Letters, 28(13), 2593–2596. https://doi.org/10.1029/2000GL01269910.1029/2000GL012699Open DOISearch in Google Scholar

Zelenyi L.M., Gurevich A.V., Klimov S.I., Angarov V.N., Batanov O.V., Bogomolov A.V., … Yashin I.V. (2014). The academic Chibis-M microsatellite. Cosmic Research, 52(2), 87–98. https://doi.org/10.1134/s001095251401011010.1134/s0010952514010110Open DOISearch in Google Scholar

eISSN:
2083-6104
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Geosciences, other