Acceso abierto

Impact of Dried Fig Fruit Extract Conjugated with Selenium Nanoparticles on Productive and Blood Parameters of Chicken

, , , , , , , ,  y   
24 jul 2025

Cite
Descargar portada

Abd El-Hack M.E., Kamal M., Altaie H.A., Youssef I.M., Algarni E.H., Almohmadi N.H., Swelum A.A. (2023 a). Peppermint essential oil and its nano-emulsion: Potential against aflatoxigenic fungus Aspergillus flavus in food and feed. Toxicon, 234: 107309. Search in Google Scholar

Abd El-Hack M.E., Abdelnour S.A., Kamal M., Khafaga A.F., Shakoori A.M., Bagadood R.M., Świątkiewicz S. (2023 b). Lactoferrin: Antimicrobial impacts, genomic guardian, therapeutic uses and clinical significance for humans and animals. Biomed. Pharmacother., 164: 114967. Search in Google Scholar

Abd El-Hack M.E., Kamal M., Alqhtani A.H., Alreemi R.M., Alazragi R.S., Khojah H. Świątkiewicz S. (2023 c). Detoxification impacts of dietary probiotic and prebiotic supplements against aflatoxins: an updated knowledge –a review. Ann. Anim. Sci., 23: 1049–1060. Search in Google Scholar

Abd El-Hack M.E., Ashour E.A., Aljahdali N., Zabermawi N.M., Baset S.A., Kamal M., Bassiony S.S. (2024 a). Does the dietary supplementation of organic nano-zinc as a growth promoter impact broiler’s growth, carcass and meat quality traits, blood metabolites, and cecal microbiota? Poult. Sci., 103: 103550. Search in Google Scholar

Abd El-Hack M.E., Ashour E.A., Baset S.A., Kamal M., Swelum A.A., Suliman G.M., Bassiony S.S. (2024 b). Effect of dietary supplementation of organic selenium nanoparticles on broiler chickens’ growth performance and carcass traits. Biol. Trace Elem. Res., 202: 3760–3766. Search in Google Scholar

Adeyeye S.A., Oloruntola O.D., Ayodele S.O., Falowo A.B., Agbede J.O. (2020). Wild sunflower and goat weed leaf meals composite-mix supplementation in broiler chickens: effects on performance, health status and meat. Acta Fytotech. Zootech., 23: 205–212. Search in Google Scholar

Ahmadi F., Ebrahimnezhad Y., Sis N.M., Ghalehkandi J.G. (2013). The effects of zinc oxide nanoparticles on performance, digestive organs, and serum lipid concentrations in broiler chickens during starter period. Int. J. Biosci., 3: 23–29. Search in Google Scholar

Ahmadi M., Ahmadian A., Seidavi A.R. (2018). Effect of different levels of nano-selenium on performance, blood parameters, immunity and carcass characteristics of broiler chickens. Poult. Sci. J., 6: 99–108. Search in Google Scholar

Aikpitanyi K.U., Egweh N.O. (2020). Haematological and biochemical profile of broiler chickens fed diets containing ginger and black pepper additives. Nigerian J. Anim. Sci., 22: 114–125. Search in Google Scholar

Al-Quwaie D.A. (2023). The influence of bacterial selenium nanoparticles biosynthesized by Bacillus subtilus DA20 on blood constituents, growth performance, carcass traits, and gut microbiota of broiler chickens. Poult. Sci., 102: 102848. Search in Google Scholar

Aparna N., Karunakaran R. (2016). Effect of selenium nanoparticles supplementation on oxidation resistance of broiler chicken. Indian J. Sci. Technol., 9: 1–5. Search in Google Scholar

Ashour E.A., Aldhalmi A.K., Ismail I.S., Kamal M., Elolimy A.A., Swelum A.A., Abd El-Hack M.E. (2024 a). The effect of using Echinacea extract as an immune system stimulant and antioxidant on blood indicators, growth efficiency, and carcass characteristics in broiler chickens to produce a healthy product. Poult. Sci., 104392. Search in Google Scholar

Ashour E.A., Aldhalmi A.K., Kamal M., Salem S.S., Mahgoub S.A., Alqhtani A.H., Swelum A.A. (2024 b). The efficacy of artichoke leaf extract conjugated with organic zinc nanoparticles on growth, carcass traits and blood biochemical parameters of broilers. Poult. Sci., 104521. Search in Google Scholar

Au A., Mojadadi A., Shao J.Y., Ahmad G., Witting P.K. (2023). Physiological benefits of novel selenium delivery via nanoparticles. Int. J. Mol. Sci., 24: 6068. Search in Google Scholar

Chantziaras I., Boyen F., Callens B., Dewulf J. (2014). Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries. J. Antimicrob. Chemother., 69: 827–834. Search in Google Scholar

Chen G.S., Wu J.F., Li C. (2014). Effect of different selenium sources on production performance and biochemical parameters of broilers. J. Anim. Physiol. Anim. Nutr., 98: 747–754. Search in Google Scholar

Ciftci M., Simsek U.G., Yuce A., Yilmaz O., Dalkilic B. (2010). Effects of dietary antibiotic and cinnamon oil supplementation on antioxidant enzyme activities, cholesterol levels and fatty acid compositions of serum and meat in broiler chickens. Acta Vet. Brno, 79: 33–40. Search in Google Scholar

Ebeid T.A., Zeweil H.S., Basyony M.M., Dosoky W.M., Badry H. (2013). Fortification of rabbit diets with vitamin E or selenium affects growth performance, lipid peroxidation, oxidative status, and immune response in growing rabbits. Livest. Sci., 155: 323–331. Search in Google Scholar

Eid Y.Z., Zomara M., Tawfeek F.A. (2022). Effect of the biologically produced nano selenium dietary supplementation on growth performance, carcass characteristics, blood parameters, and economic efficiency in broiler chickens. Alex. J. Vet. Sci., 73: 47–55. Search in Google Scholar

El-Abbasy M.M., Aldhalmi A.K., Ashour E.A., Bassiony S.S., Kamal M., Alqhtani A.H., Swelum A.A. (2024). Enhancing broiler growth and carcass quality: Impact of diets enriched with Moringa oleifera leaf powder conjugated with zinc nanoparticles. Poult. Sci., 104519. Search in Google Scholar

Elkhateeb F.S., Ghazalah A.A., Lohakare J., Abdel-Wareth A.A. (2024). Selenium nanoparticle inclusion in broiler diets for enhancing sustainable production and health. Sci. Rep., 14: 18557. Search in Google Scholar

El-Maddawy Z.K., El-Sawy A.E.S.F., Ashoura N.R., Aboelenin S.M., Soliman M.M., Ellakany H.F., El-Shall N.A. (2022). Use of zinc oxide nanoparticles as anticoccidial agents in broiler chickens along with its impact on growth performance, antioxidant status, and hematobiochemical profile. Life, 12: 74. Search in Google Scholar

El-Ratel I.T., Amara M.M., Beshara M.M., El Basuini M.F., Fouda S.F., El-Kholy K.H., Mekawy A. (2024). Effects of supplemental vitamin A on reproduction and antioxidative status of aged laying hens, and their offspring’s growth, blood indices and immunity. Poult. Sci., 103: 103453. Search in Google Scholar

Gangadoo S., Dinev I., Chapman J., Hughes R.J., Van T.T.H., Moore R.J., Stanley D. )2018(. Selenium nanoparticles in poultry feed modify gut microbiota and increase the abundance of Faecalibacterium prausnitzii. Appl. Microbiol. Biotechnol., 102: 1455–1466. Search in Google Scholar

Gangadoo S., Dinev I., Willson N.L., Moore R.J., Chapman J., Stanley D. (2020). Nanoparticles of selenium as high bioavailable and non-toxic supplement alternatives for broiler chickens. Environ. Sci. Pollut. Res., 27: 16159–16166. Search in Google Scholar

Gaweł S., Wardas M., Niedworok E., Wardas P. (2004). Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad. Lek., 57: 453–455. Search in Google Scholar

Gupta C., Khusro A., Salem A.Z. (2019). Susceptibility of poultry-associated bacterial pathogens to Momordica charantia fruits and evaluation of in vitro biological properties. Microb. Pathog., 132: 222–229. Search in Google Scholar

Guruprasad K.P., Subramanian A., Singh V.J., Sharma R.S.K., Gopinath P.M., Sewram V., Satyamoorthy K. (2012). Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells. BMC Compleme. Altern. Med., 12: 1–9. Search in Google Scholar

Hartemann P., Hoet P., Proykova A., Fernandes T., Baun A., Jong W. De, Wijnhoven S. (2015). Nanosilver: Safety, health and environmental effects and role in antimicrobial resistance. Mater. Today, 18: 122–123. Search in Google Scholar

Hu C.H., Li Y.L., Xiong L., Zhang H.M., Song J., Xia M.S. (2012). Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim. Feed Sci. Technol., 177: 204–210. Search in Google Scholar

Iyaode I.I., Ibrahim H.O., Uwade F., Shittu M.W. (2020). Haematology and serum biochemistry of broiler strains (Cobbs and Arbor-acre) fed ginger (Zingiber officinale). GSC Biol. Pharm. Sci., 11: 320–326. Search in Google Scholar

Kamal M., Youssef I.M., Khalil H.A., Ayoub M.A., Hashem N.M (2022). Multifunctional role of chitosan in farm animals: a comprehensive review. Ann. Anim. Sci., 23: 69–86. Search in Google Scholar

Kamal M., Aljahdali N., Jaber F.A., Majrashi K.A., Kishk W.H., Khalil H.A., Abdel-Khalek A.M., Ayoub M.A., Abd El-Hack M.E. (2023a). Influence of dietary chitosan supplementation on ovarian development and reproductive performance of New Zealand White rabbit. Ann. Anim. Sci., 23: 757–764. Search in Google Scholar

Kamal M., Kishk W.H., Khalil H.A., Abdel-Khalek A.M., Ayoub M.A., Swelum A.A., Alqhtani A.H., Ba-Awadh H.A., Abd El-Hack M.E. (2023 b). Effect of dietary chitosan supplementation on productive and physiological performance parameters of growing New Zealand white rabbits. Int. J. Biol. Macromol., 230: 123166. Search in Google Scholar

Khan I., Zaneb H., Masood S., Ashraf S., Rehman H.F., Tahir S.K., Shah M. (2021). Supplementation of selenium nanoparticles-loaded chitosan improves production performance, intestinal morphology, and gut microflora in broiler chickens. J. Poult. Sci., 59: 272–281. Search in Google Scholar

Khan M.T., Niazi A.S., Arslan M., Azhar M., Asad T., Raziq F., Khan H.U. (2023). Effects of selenium supplementation on the growth performance, slaughter characteristics, and blood biochemistry of naked neck chicken. Poult. Sci., 102: 102420. Search in Google Scholar

Khusro A., Aarti C., Preetamraj J.P., Panicker S.G. (2013). Antibacterial activity of different solvent extracts of garlic against new strains of pathogenic bacteria: An in vitro study. Int. J. Appl. Biol. Pharm. Technol., 4: 316–321. Search in Google Scholar

Mahmoud H.E.D., Ijiri D., Ebeid T.A., Ohtsuka A. (2016). Effects of dietary nano-selenium supplementation on growth performance, antioxidative status, and immunity in broiler chickens under thermoneutral and high ambient temperature conditions. J. Poult. Sci., 53: 274–283. Search in Google Scholar

Mawa S., Husain K., Jantan I. (2013). Ficus carica L. (Moraceae): phytochemistry, traditional uses and biological activities. Evid. Based Complement. Alternat. Med., 974256. Search in Google Scholar

Mopuri R., Ganjayi M., Meriga B., Koorbanally N.A., Islam M.S. (2018). The effects of Ficus carica on the activity of enzymes related to metabolic syndrome. J. Food Drug Anal., 26: 201–210. Search in Google Scholar

Nabi F., Arain M.A., Hassan F., Umar M., Rajput N., Alagawany M., Liu J. (2020). Nutraceutical role of selenium nanoparticles in poultry nutrition: a review. World Poult. Sci. J., 76: 459–471. Search in Google Scholar

Nabizadeh A. (2012). The effect of inulin on broiler chicken intestinal microflora, gut morphology, and performance. Anim. Feed Sci., 21: 725–374. Search in Google Scholar

NRC (1994). National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA. Search in Google Scholar

Oke O.E., Emeshili U.K., Iyasere O.S., Abioja M.O., Daramola J.O., Ladokun A.O., Adejuyigbe A.E. (2017). Physiological responses and performance of broiler chickens offered olive leaf extract under a hot humid tropical climate. J. Appl. Poult. Res., 26: 376–382. Search in Google Scholar

Opyd P.M., Jurgoński A., Juśkiewicz J., Milala J., Zduńczyk Z., Król B. (2017). Nutritional and health-related effects of a diet containing apple seed meal in rats: the case of amygdalin. Nutrients, 9: 1091. Search in Google Scholar

Osowe C.O., Olowu O.P.A., Adu O.A., Oloruntola O.D., Chineke C.A. (2021). Proximate and mineral composition, phytochemical analysis, and antioxidant activity of fig trees (Ficus spp.) leaf powder. Asian J. Biochem. Genet. Mol. Biol., 9: 19–29. Search in Google Scholar

Osowe C.O., Olanrewaju A., Adu O.A., Oloruntola O.D., Chineke C.A. (2023). Performance, haematological and serum indices of broiler chicken fed fig leaf powder and vitamin C supplemented diets. World J. Adv. Res. Rev., 17: 898–906. Search in Google Scholar

Payne R.L., Southern L.L. (2005). Comparison of inorganic and organic selenium sources for broilers. Poult. Sci., 84: 898–902. Search in Google Scholar

Prasoon S., Naik J., Malathi V., Nagaraja C.S., Narayanaswami H.D. (2018). Effects of dietary supplementation of inorganic, organic, and nano selenium on antioxidant status of Giriraja chicken. Int. J. Curr. Microbiol. Appl. Sci., 7: 2399–2412. Search in Google Scholar

Rehman H.F.U., Zaneb H., Masood S.Y., Yousaf M.S., Hayat K., Majeed K.A., Rehman H. (2022). Effect of selenium nanoparticles and mannan oligosaccharide supplementation on growth performance, stress indicators, and intestinal microarchitecture of broilers reared under high stocking density. Animals, 12: 2910. Search in Google Scholar

Sandhu A.K., Islam M., Edirisinghe I., Burton-Freeman B. (2023). Phytochemical composition and health benefits of figs (fresh and dried): a review of literature from 2000 to 2022. Nutrients, 15: 2623. Search in Google Scholar

Sarrigeorgiou I., Stivarou T., Tsinti G., Patsias A., Fotou E., Moulasioti V., Lymberi V. (2023). Levels of circulating IgM and IgY natural antibodies in broiler chicks: Association with genotype and farming systems. Biology, 12: 304. Search in Google Scholar

Soni N., Mehta S., Satpathy G., Gupta R.K. (2014). Estimation of nutritional, phytochemical, antioxidant, and antibacterial activity of dried fig (Ficus carica). J. Pharmacogn. Phytochem., 3: 158–165. Search in Google Scholar

Tufan T., Arslan C., Sari M., Kaplan O. (2015). Effect of black cumin (Nigella sativa L.) seeds or black cumin oil addition to Japanese quail diets on growth performance, carcass traits, and some blood parameters. Kafkas Univ. Vet. Fak. Derg., 21: 593–599. Search in Google Scholar

Tufan T., Bolacali M., İrak K., Arslan C., Özcan C., Kaplan O., Irmak M. (2023). Dietary fig seeds improve the growth performance and antioxidant capacity of quail. S. Afr. J. Anim. Sci., 53: 302–314. Search in Google Scholar

Wang H.F., Zhong X.H., Shi W.Y., Guo B. (2011). Study of malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in chickens infected with avian infectious bronchitis virus. Afr. J. Biotechnol., 10: 9213–9217. Search in Google Scholar

Wang Z.G., Pan X.J., Peng Z.Q., Zhao R.Q., Zhou G.H. (2009). Methionine and selenium yeast supplementation of the maternal diets affects color, water-holding capacity, and oxidative stability of their male offspring meat at the early stage. Poult. Sci., 88: 1096–1101. Search in Google Scholar

Wickramasuriya S.S., Park I., Lee Y., Lillehoj H.S. (2023). Effect of dietary organic selenium on growth performance, gut health, and coccidiosis response in broiler chickens. Animals, 13: 1560. Search in Google Scholar

Woods S.L., Sobolewska S., Rose S.P., Whiting I.P., Blanchard A., Ionescu C., Pirgozliev V. (2020). Effect of feeding different sources of selenium on growth performance and antioxidant status of broilers. Br. Poult. Sci., 61: 274–280. Search in Google Scholar

Yang W., Li J., Yao Z., Li M. (2024). A review on the alternatives to antibiotics and the treatment of antibiotic pollution: Current development and prospects. Sci. Total Environ., 171757. Search in Google Scholar

Yoon I., Werner T.M., Butler J.M. (2007). Effect of source and concentration of selenium on growth performance and selenium retention in broiler chickens. Poult. Sci., 86: 727–730. Search in Google Scholar

Young D.S., Friedman R.B. (2001). Effects of disease on clinical laboratory tests. 1. AACC Press., 2001. Search in Google Scholar

Zheng S., Zhao J., Xing H., Xu S. (2019). Oxidative stress, inflammation, and glycometabolism disorder-induced erythrocyte hemolysis in selenium-deficient exudative diathesis broilers. J. Cell Physiol., 234: 16328–16337. Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Ciencias de la vida, Biotecnología, Zoología, Medicina, Medicina veterinaria