[
Abd El-Hack M.E., Kamal M., Altaie H.A., Youssef I.M., Algarni E.H., Almohmadi N.H., Swelum A.A. (2023 a). Peppermint essential oil and its nano-emulsion: Potential against aflatoxigenic fungus Aspergillus flavus in food and feed. Toxicon, 234: 107309.
]Search in Google Scholar
[
Abd El-Hack M.E., Abdelnour S.A., Kamal M., Khafaga A.F., Shakoori A.M., Bagadood R.M., Świątkiewicz S. (2023 b). Lactoferrin: Antimicrobial impacts, genomic guardian, therapeutic uses and clinical significance for humans and animals. Biomed. Pharmacother., 164: 114967.
]Search in Google Scholar
[
Abd El-Hack M.E., Kamal M., Alqhtani A.H., Alreemi R.M., Alazragi R.S., Khojah H. Świątkiewicz S. (2023 c). Detoxification impacts of dietary probiotic and prebiotic supplements against aflatoxins: an updated knowledge –a review. Ann. Anim. Sci., 23: 1049–1060.
]Search in Google Scholar
[
Abd El-Hack M.E., Ashour E.A., Aljahdali N., Zabermawi N.M., Baset S.A., Kamal M., Bassiony S.S. (2024 a). Does the dietary supplementation of organic nano-zinc as a growth promoter impact broiler’s growth, carcass and meat quality traits, blood metabolites, and cecal microbiota? Poult. Sci., 103: 103550.
]Search in Google Scholar
[
Abd El-Hack M.E., Ashour E.A., Baset S.A., Kamal M., Swelum A.A., Suliman G.M., Bassiony S.S. (2024 b). Effect of dietary supplementation of organic selenium nanoparticles on broiler chickens’ growth performance and carcass traits. Biol. Trace Elem. Res., 202: 3760–3766.
]Search in Google Scholar
[
Adeyeye S.A., Oloruntola O.D., Ayodele S.O., Falowo A.B., Agbede J.O. (2020). Wild sunflower and goat weed leaf meals composite-mix supplementation in broiler chickens: effects on performance, health status and meat. Acta Fytotech. Zootech., 23: 205–212.
]Search in Google Scholar
[
Ahmadi F., Ebrahimnezhad Y., Sis N.M., Ghalehkandi J.G. (2013). The effects of zinc oxide nanoparticles on performance, digestive organs, and serum lipid concentrations in broiler chickens during starter period. Int. J. Biosci., 3: 23–29.
]Search in Google Scholar
[
Ahmadi M., Ahmadian A., Seidavi A.R. (2018). Effect of different levels of nano-selenium on performance, blood parameters, immunity and carcass characteristics of broiler chickens. Poult. Sci. J., 6: 99–108.
]Search in Google Scholar
[
Aikpitanyi K.U., Egweh N.O. (2020). Haematological and biochemical profile of broiler chickens fed diets containing ginger and black pepper additives. Nigerian J. Anim. Sci., 22: 114–125.
]Search in Google Scholar
[
Al-Quwaie D.A. (2023). The influence of bacterial selenium nanoparticles biosynthesized by Bacillus subtilus DA20 on blood constituents, growth performance, carcass traits, and gut microbiota of broiler chickens. Poult. Sci., 102: 102848.
]Search in Google Scholar
[
Aparna N., Karunakaran R. (2016). Effect of selenium nanoparticles supplementation on oxidation resistance of broiler chicken. Indian J. Sci. Technol., 9: 1–5.
]Search in Google Scholar
[
Ashour E.A., Aldhalmi A.K., Ismail I.S., Kamal M., Elolimy A.A., Swelum A.A., Abd El-Hack M.E. (2024 a). The effect of using Echinacea extract as an immune system stimulant and antioxidant on blood indicators, growth efficiency, and carcass characteristics in broiler chickens to produce a healthy product. Poult. Sci., 104392.
]Search in Google Scholar
[
Ashour E.A., Aldhalmi A.K., Kamal M., Salem S.S., Mahgoub S.A., Alqhtani A.H., Swelum A.A. (2024 b). The efficacy of artichoke leaf extract conjugated with organic zinc nanoparticles on growth, carcass traits and blood biochemical parameters of broilers. Poult. Sci., 104521.
]Search in Google Scholar
[
Au A., Mojadadi A., Shao J.Y., Ahmad G., Witting P.K. (2023). Physiological benefits of novel selenium delivery via nanoparticles. Int. J. Mol. Sci., 24: 6068.
]Search in Google Scholar
[
Chantziaras I., Boyen F., Callens B., Dewulf J. (2014). Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries. J. Antimicrob. Chemother., 69: 827–834.
]Search in Google Scholar
[
Chen G.S., Wu J.F., Li C. (2014). Effect of different selenium sources on production performance and biochemical parameters of broilers. J. Anim. Physiol. Anim. Nutr., 98: 747–754.
]Search in Google Scholar
[
Ciftci M., Simsek U.G., Yuce A., Yilmaz O., Dalkilic B. (2010). Effects of dietary antibiotic and cinnamon oil supplementation on antioxidant enzyme activities, cholesterol levels and fatty acid compositions of serum and meat in broiler chickens. Acta Vet. Brno, 79: 33–40.
]Search in Google Scholar
[
Ebeid T.A., Zeweil H.S., Basyony M.M., Dosoky W.M., Badry H. (2013). Fortification of rabbit diets with vitamin E or selenium affects growth performance, lipid peroxidation, oxidative status, and immune response in growing rabbits. Livest. Sci., 155: 323–331.
]Search in Google Scholar
[
Eid Y.Z., Zomara M., Tawfeek F.A. (2022). Effect of the biologically produced nano selenium dietary supplementation on growth performance, carcass characteristics, blood parameters, and economic efficiency in broiler chickens. Alex. J. Vet. Sci., 73: 47–55.
]Search in Google Scholar
[
El-Abbasy M.M., Aldhalmi A.K., Ashour E.A., Bassiony S.S., Kamal M., Alqhtani A.H., Swelum A.A. (2024). Enhancing broiler growth and carcass quality: Impact of diets enriched with Moringa oleifera leaf powder conjugated with zinc nanoparticles. Poult. Sci., 104519.
]Search in Google Scholar
[
Elkhateeb F.S., Ghazalah A.A., Lohakare J., Abdel-Wareth A.A. (2024). Selenium nanoparticle inclusion in broiler diets for enhancing sustainable production and health. Sci. Rep., 14: 18557.
]Search in Google Scholar
[
El-Maddawy Z.K., El-Sawy A.E.S.F., Ashoura N.R., Aboelenin S.M., Soliman M.M., Ellakany H.F., El-Shall N.A. (2022). Use of zinc oxide nanoparticles as anticoccidial agents in broiler chickens along with its impact on growth performance, antioxidant status, and hematobiochemical profile. Life, 12: 74.
]Search in Google Scholar
[
El-Ratel I.T., Amara M.M., Beshara M.M., El Basuini M.F., Fouda S.F., El-Kholy K.H., Mekawy A. (2024). Effects of supplemental vitamin A on reproduction and antioxidative status of aged laying hens, and their offspring’s growth, blood indices and immunity. Poult. Sci., 103: 103453.
]Search in Google Scholar
[
Gangadoo S., Dinev I., Chapman J., Hughes R.J., Van T.T.H., Moore R.J., Stanley D. )2018(. Selenium nanoparticles in poultry feed modify gut microbiota and increase the abundance of Faecalibacterium prausnitzii. Appl. Microbiol. Biotechnol., 102: 1455–1466.
]Search in Google Scholar
[
Gangadoo S., Dinev I., Willson N.L., Moore R.J., Chapman J., Stanley D. (2020). Nanoparticles of selenium as high bioavailable and non-toxic supplement alternatives for broiler chickens. Environ. Sci. Pollut. Res., 27: 16159–16166.
]Search in Google Scholar
[
Gaweł S., Wardas M., Niedworok E., Wardas P. (2004). Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad. Lek., 57: 453–455.
]Search in Google Scholar
[
Gupta C., Khusro A., Salem A.Z. (2019). Susceptibility of poultry-associated bacterial pathogens to Momordica charantia fruits and evaluation of in vitro biological properties. Microb. Pathog., 132: 222–229.
]Search in Google Scholar
[
Guruprasad K.P., Subramanian A., Singh V.J., Sharma R.S.K., Gopinath P.M., Sewram V., Satyamoorthy K. (2012). Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells. BMC Compleme. Altern. Med., 12: 1–9.
]Search in Google Scholar
[
Hartemann P., Hoet P., Proykova A., Fernandes T., Baun A., Jong W. De, Wijnhoven S. (2015). Nanosilver: Safety, health and environmental effects and role in antimicrobial resistance. Mater. Today, 18: 122–123.
]Search in Google Scholar
[
Hu C.H., Li Y.L., Xiong L., Zhang H.M., Song J., Xia M.S. (2012). Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim. Feed Sci. Technol., 177: 204–210.
]Search in Google Scholar
[
Iyaode I.I., Ibrahim H.O., Uwade F., Shittu M.W. (2020). Haematology and serum biochemistry of broiler strains (Cobbs and Arbor-acre) fed ginger (Zingiber officinale). GSC Biol. Pharm. Sci., 11: 320–326.
]Search in Google Scholar
[
Kamal M., Youssef I.M., Khalil H.A., Ayoub M.A., Hashem N.M (2022). Multifunctional role of chitosan in farm animals: a comprehensive review. Ann. Anim. Sci., 23: 69–86.
]Search in Google Scholar
[
Kamal M., Aljahdali N., Jaber F.A., Majrashi K.A., Kishk W.H., Khalil H.A., Abdel-Khalek A.M., Ayoub M.A., Abd El-Hack M.E. (2023a). Influence of dietary chitosan supplementation on ovarian development and reproductive performance of New Zealand White rabbit. Ann. Anim. Sci., 23: 757–764.
]Search in Google Scholar
[
Kamal M., Kishk W.H., Khalil H.A., Abdel-Khalek A.M., Ayoub M.A., Swelum A.A., Alqhtani A.H., Ba-Awadh H.A., Abd El-Hack M.E. (2023 b). Effect of dietary chitosan supplementation on productive and physiological performance parameters of growing New Zealand white rabbits. Int. J. Biol. Macromol., 230: 123166.
]Search in Google Scholar
[
Khan I., Zaneb H., Masood S., Ashraf S., Rehman H.F., Tahir S.K., Shah M. (2021). Supplementation of selenium nanoparticles-loaded chitosan improves production performance, intestinal morphology, and gut microflora in broiler chickens. J. Poult. Sci., 59: 272–281.
]Search in Google Scholar
[
Khan M.T., Niazi A.S., Arslan M., Azhar M., Asad T., Raziq F., Khan H.U. (2023). Effects of selenium supplementation on the growth performance, slaughter characteristics, and blood biochemistry of naked neck chicken. Poult. Sci., 102: 102420.
]Search in Google Scholar
[
Khusro A., Aarti C., Preetamraj J.P., Panicker S.G. (2013). Antibacterial activity of different solvent extracts of garlic against new strains of pathogenic bacteria: An in vitro study. Int. J. Appl. Biol. Pharm. Technol., 4: 316–321.
]Search in Google Scholar
[
Mahmoud H.E.D., Ijiri D., Ebeid T.A., Ohtsuka A. (2016). Effects of dietary nano-selenium supplementation on growth performance, antioxidative status, and immunity in broiler chickens under thermoneutral and high ambient temperature conditions. J. Poult. Sci., 53: 274–283.
]Search in Google Scholar
[
Mawa S., Husain K., Jantan I. (2013). Ficus carica L. (Moraceae): phytochemistry, traditional uses and biological activities. Evid. Based Complement. Alternat. Med., 974256.
]Search in Google Scholar
[
Mopuri R., Ganjayi M., Meriga B., Koorbanally N.A., Islam M.S. (2018). The effects of Ficus carica on the activity of enzymes related to metabolic syndrome. J. Food Drug Anal., 26: 201–210.
]Search in Google Scholar
[
Nabi F., Arain M.A., Hassan F., Umar M., Rajput N., Alagawany M., Liu J. (2020). Nutraceutical role of selenium nanoparticles in poultry nutrition: a review. World Poult. Sci. J., 76: 459–471.
]Search in Google Scholar
[
Nabizadeh A. (2012). The effect of inulin on broiler chicken intestinal microflora, gut morphology, and performance. Anim. Feed Sci., 21: 725–374.
]Search in Google Scholar
[
NRC (1994). National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA.
]Search in Google Scholar
[
Oke O.E., Emeshili U.K., Iyasere O.S., Abioja M.O., Daramola J.O., Ladokun A.O., Adejuyigbe A.E. (2017). Physiological responses and performance of broiler chickens offered olive leaf extract under a hot humid tropical climate. J. Appl. Poult. Res., 26: 376–382.
]Search in Google Scholar
[
Opyd P.M., Jurgoński A., Juśkiewicz J., Milala J., Zduńczyk Z., Król B. (2017). Nutritional and health-related effects of a diet containing apple seed meal in rats: the case of amygdalin. Nutrients, 9: 1091.
]Search in Google Scholar
[
Osowe C.O., Olowu O.P.A., Adu O.A., Oloruntola O.D., Chineke C.A. (2021). Proximate and mineral composition, phytochemical analysis, and antioxidant activity of fig trees (Ficus spp.) leaf powder. Asian J. Biochem. Genet. Mol. Biol., 9: 19–29.
]Search in Google Scholar
[
Osowe C.O., Olanrewaju A., Adu O.A., Oloruntola O.D., Chineke C.A. (2023). Performance, haematological and serum indices of broiler chicken fed fig leaf powder and vitamin C supplemented diets. World J. Adv. Res. Rev., 17: 898–906.
]Search in Google Scholar
[
Payne R.L., Southern L.L. (2005). Comparison of inorganic and organic selenium sources for broilers. Poult. Sci., 84: 898–902.
]Search in Google Scholar
[
Prasoon S., Naik J., Malathi V., Nagaraja C.S., Narayanaswami H.D. (2018). Effects of dietary supplementation of inorganic, organic, and nano selenium on antioxidant status of Giriraja chicken. Int. J. Curr. Microbiol. Appl. Sci., 7: 2399–2412.
]Search in Google Scholar
[
Rehman H.F.U., Zaneb H., Masood S.Y., Yousaf M.S., Hayat K., Majeed K.A., Rehman H. (2022). Effect of selenium nanoparticles and mannan oligosaccharide supplementation on growth performance, stress indicators, and intestinal microarchitecture of broilers reared under high stocking density. Animals, 12: 2910.
]Search in Google Scholar
[
Sandhu A.K., Islam M., Edirisinghe I., Burton-Freeman B. (2023). Phytochemical composition and health benefits of figs (fresh and dried): a review of literature from 2000 to 2022. Nutrients, 15: 2623.
]Search in Google Scholar
[
Sarrigeorgiou I., Stivarou T., Tsinti G., Patsias A., Fotou E., Moulasioti V., Lymberi V. (2023). Levels of circulating IgM and IgY natural antibodies in broiler chicks: Association with genotype and farming systems. Biology, 12: 304.
]Search in Google Scholar
[
Soni N., Mehta S., Satpathy G., Gupta R.K. (2014). Estimation of nutritional, phytochemical, antioxidant, and antibacterial activity of dried fig (Ficus carica). J. Pharmacogn. Phytochem., 3: 158–165.
]Search in Google Scholar
[
Tufan T., Arslan C., Sari M., Kaplan O. (2015). Effect of black cumin (Nigella sativa L.) seeds or black cumin oil addition to Japanese quail diets on growth performance, carcass traits, and some blood parameters. Kafkas Univ. Vet. Fak. Derg., 21: 593–599.
]Search in Google Scholar
[
Tufan T., Bolacali M., İrak K., Arslan C., Özcan C., Kaplan O., Irmak M. (2023). Dietary fig seeds improve the growth performance and antioxidant capacity of quail. S. Afr. J. Anim. Sci., 53: 302–314.
]Search in Google Scholar
[
Wang H.F., Zhong X.H., Shi W.Y., Guo B. (2011). Study of malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in chickens infected with avian infectious bronchitis virus. Afr. J. Biotechnol., 10: 9213–9217.
]Search in Google Scholar
[
Wang Z.G., Pan X.J., Peng Z.Q., Zhao R.Q., Zhou G.H. (2009). Methionine and selenium yeast supplementation of the maternal diets affects color, water-holding capacity, and oxidative stability of their male offspring meat at the early stage. Poult. Sci., 88: 1096–1101.
]Search in Google Scholar
[
Wickramasuriya S.S., Park I., Lee Y., Lillehoj H.S. (2023). Effect of dietary organic selenium on growth performance, gut health, and coccidiosis response in broiler chickens. Animals, 13: 1560.
]Search in Google Scholar
[
Woods S.L., Sobolewska S., Rose S.P., Whiting I.P., Blanchard A., Ionescu C., Pirgozliev V. (2020). Effect of feeding different sources of selenium on growth performance and antioxidant status of broilers. Br. Poult. Sci., 61: 274–280.
]Search in Google Scholar
[
Yang W., Li J., Yao Z., Li M. (2024). A review on the alternatives to antibiotics and the treatment of antibiotic pollution: Current development and prospects. Sci. Total Environ., 171757.
]Search in Google Scholar
[
Yoon I., Werner T.M., Butler J.M. (2007). Effect of source and concentration of selenium on growth performance and selenium retention in broiler chickens. Poult. Sci., 86: 727–730.
]Search in Google Scholar
[
Young D.S., Friedman R.B. (2001). Effects of disease on clinical laboratory tests. 1. AACC Press., 2001.
]Search in Google Scholar
[
Zheng S., Zhao J., Xing H., Xu S. (2019). Oxidative stress, inflammation, and glycometabolism disorder-induced erythrocyte hemolysis in selenium-deficient exudative diathesis broilers. J. Cell Physiol., 234: 16328–16337.
]Search in Google Scholar