Acceso abierto

Impact of Herbal Blends Supplementation on the Mineral Profile of Blood Plasma and Milk of Dairy Cows*

, , , ,  y   
24 jul 2025

Cite
Descargar portada

Abo El-Maaty A.M., Aly M.A., Kotp M.S., Ali A.H., El Gabry M. A. (2021). The effect of Seasonal heat stress on oxidants–antioxidants biomarkers, trace minerals and acute-phase response of periparturient Holstein Friesian cows supplemented with adequate minerals and vitamins with and without retained fetal membranes. Bull. Natl. Res. Cent., 45: 1–7. Search in Google Scholar

Aleri J.W., Hine B.C., Pyman M.F., Mansell P.D., Wales W.J., Mallard B., Fisher A.D. (2016). Periparturient immunosuppression and strategies to improve dairy cow health during the periparturient period. Res. Vet. Sci., 108: 8–17. Search in Google Scholar

AlSuwaiegh S.B., Almotham A.M., Alyousef Y.M., Mansour A.T., Al-Sagheer A.A. (2022). Influence of functional feed supplements on the milk production efficiency, feed utilization, blood metabolites, and health of Holstein cows during mid-lactation. Sustain Sci., 14: 8444. Search in Google Scholar

AOAC (2011). Association of Official Analytical Chemists. Official Methods of Analysis. Gaithersburg, MD, USA, 17th ed. Search in Google Scholar

Aschenbach J.R., Penner G.B., Stumpff F., Gäbel G. (2011). Ruminant nutrition symposium: role of fermentation acid absorption in the regulation of ruminal pH. J. Anim. Sci., 89: 1092–1107. Search in Google Scholar

Ayrle H., Schmid K., Disler M., Bischoff T., Stucki K., Zbinden M., Vogl C.R., Hamburger M., Walkenhorst M. (2015). Plant species reported from Swiss farmers to treat bovine respiratory diseases. Planta Medica, 81. Search in Google Scholar

Barros R.G., Lodde V., Dieci C., Fraciosi F., Luciano A.M. (2018). Study on the effects of zinc supplementation during in vitro embryo production technologies in cattle. Proc. Veterinary and Animal Science Days 2018, 6–8.06.2018, Milan, Italy. Search in Google Scholar

Bates A.J., Wells M., Laven R.A. (2022). The effect of pre-calving injection of trace mineral supplements on periparturient disease incidence in pasture based dairy cows. Vet. J., 286: 105867. Search in Google Scholar

Bhatt N. (2015). Herbs and herbal supplements, a novel nutritional approach in animal nutrition. Iran. J. Appl. Anim. Sci., 5: 497–516. Search in Google Scholar

Bijl E., van Valenberg H.J.F., Huppertz T., van Hooijdonk A.C.M. (2013). Protein, casein, and micellar salts in milk: Current content and historical perspectives. J. Dairy Sci., 96: 5455–5464. Search in Google Scholar

Borowska S., Brzoska M.M., Tomczyk M. (2018). Complexation of bioelements and toxic metals by polyphenolic compounds –implications for health. Curr. Drug Targets, 19: 1612–1638. Search in Google Scholar

Cui Y., Shan Z., Hou L., Wang Q., Loor J.J., Xu C. (2021). Effect of natural Chinese herbal supplements (TCMF4) on lactation performance and serum biomarkers in peripartal dairy cows. Front. Vet. Sci., 8: 801418. Search in Google Scholar

Daniel J.B., Kvidera S.K., Martín-Tereso J. (2020). Total-tract digestibility and milk productivity of dairy cows as affected by trace mineral sources. Int. J. Dairy Sci., 103: 9081–9089. Search in Google Scholar

Davis S.R., Farr V.C., Knowles S.O., Lee J., Kolver E., Auldist M.J. (2001). Sources of variation in milk calcium content. Aust. J. Dairy Tech., 56: 156. Search in Google Scholar

Del Río-Avilés A.D., Correa-Calderón A., Avendaño-Reyes L., Macías-Cruz U., Thomas M.G., Enns R.M., Speidel S.E., Sánchez-Castro M.A., Zamorano-Algandar R., López-Castro P.A., Luna-Nevárez P. (2022). Mineral supplementation (injectable) improved reproductive performance in Holstein cows managed in a warm summer environment. Reprod. Domest. Anim., 57: 839–848. Search in Google Scholar

Dembek R., Łyszczarz R., Zimmer-Grajewska M. (2014). Plantago lanceolata L. as a component of permanent and renewed grasslands. Acta Sci. Pol. Agric., 13: 19–30. Search in Google Scholar

Denholm S.J., Sneddon A.A., McNeilly T.N., Bashir S., Mitchell M.C., Wall E. (2019). Phenotypic and genetic analysis of milk and serum element concentrations in dairy cows. J. Dairy Sci., 102: 11180–11192. Search in Google Scholar

Di Meo M.C., Salzano A., Zotti T., Palladino A., Giaquinto D., Maruccio L., Varricchio E. (2023). Plasma fatty acid profile in Italian Holstein-Friesian dairy cows supplemented with natural polyphenols from the olive plant Olea Europaea L. Vet. and Anim. Sci., 21: 100298. Search in Google Scholar

Dunshea F.R., Walker G.P., Williams R., Doyle P.T. (2019). Mineral and citrate concentrations in milk are affected by seasons, stage of lactation and management practices. Agricultuere, 9: 25. Search in Google Scholar

Dymtów I., Włodarczyk K. (2022). Composition and nutritional value of mare and donkey milk compared to milk from cows. Food. Sci. Technol. Qual., 27: 28–39. Search in Google Scholar

El-Saadony M.T., Yang T., Saad A.M., Alkafaas S.S., Elkafas S.S., Eldeeb G.S., Lorenzo J.M. (2024). Chemistry, bioavailability, bio-activity, nutritional aspects and human health benefits of polyphenols: A comprehensive review. Int. J. Biol. Macromol., 134223. Search in Google Scholar

Erickson P.S., Kalscheur K.F. (2020). Nutrition and feeding of dairy cattle. Anim. Agric., 157–180. Search in Google Scholar

Ezzat Abd El-Hack M., Alagawany M., Ragab Farag M., Tiwari R., Karthik K., Dhama K., Adel M. (2016). Beneficial impacts of thymol essential oil on health and production of animals, fish and poultry: a review. J. Essent. Oil Res., 28: 365–382. Search in Google Scholar

Fabjanowska J., Kowalczuk-Vasilev E., Klebaniuk R., Milewski S., Gümüş H. (2023). N-3 polyunsaturated fatty acids as a nutritional support of the reproductive and immune system of cattle –a review. Animals, 13: 3589. Search in Google Scholar

Fabjanowska J., Kowalczuk-Vasilev E., Klebaniuk R. (2024). Effectiveness of the use of herbal mixtures in feeding calves of meat breeds (in Polish). Sust. Anim. Prod., 49. Search in Google Scholar

Fadlalla I.M.T., Omer S.A., Atta M. (2020). Determination of some serum macroelement minerals levels at different lactation stages of dairy cows and their correlations. African J. Sci., 8: e00351. Search in Google Scholar

Fu Y., Colazo M.G., De Buck J. (2022). Development of a blood calcium test for hypocalcemia diagnosis in dairy cows. Res. Vet. Sci., 147: 60–67. Search in Google Scholar

Gaignon P., Le Grand K., Laza-Knoerr A.L., Hurtaud C., Boudon A. (2019). Effect of calcium intake and the dietary cation-anion difference during early lactation on the bone mobilization dynamics throughout lactation in dairy cows. PloS One, 14(11): e0218979. Search in Google Scholar

Goff J.P. (2018). Invited review: Mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. J. Dairy Sci., 101: 2763–2813. Search in Google Scholar

Grünberg W. (2023). Phosphorus metabolism during transition. Vet. Clin. N. Am. –Food Anim. Pract., 39: 261–274. Search in Google Scholar

Harvey K.M., Cooke R.F., Marques R.D.S. (2021). Supplementing trace minerals to beef cows during gestation to enhance productive and health responses of the offspring. Animals, 11: 1159. Search in Google Scholar

Hashemzadeh-Cigari F., Khorvash M., Ghorbani G.R., Kadivar M., Riasi A., Zebeli Q. (2014). Effects of supplementation with a phytobiotics-rich herbal mixture on performance, udder health, and metabolic status of Holstein cows with various levels of milk somatic cell counts. J. Dairy Sci., 97: 7487–7497. Search in Google Scholar

INRA (2019). INRA feeding system for ruminants (2nd ed). Wageningen Academic Publishers, Wageningen, the Netherlands, 640 pp. Search in Google Scholar

Jacob M.P., Cazaubon M., Scemama A., Prié D., Blanchet F., Guillin M.C., Michel J.B. (2002). Plasma matrix metalloproteinase-9 as a marker of blood stasis in varicose veins. Circulation, 106: 535–538. Search in Google Scholar

Jarzynowska A., Peter E. (2017). Effect of adding herbs to winter diet on fatty acid profile of lipid fraction of sheep milk (in Polish). Rocz. Nauk. Pol. Tow. Zootech., 13: 43–54. Search in Google Scholar

Keanthao P., Goselink R.M.A., Dijkstra J., Bannink A., Schonewille J.T. (2021). Effects of dietary phosphorus concentration during the transition period on plasma calcium concentrations, feed intake, and milk production in dairy cows. J. Dairy Sci., 104: 11646–11659. Search in Google Scholar

Kebreab E., Odongo N.E., McBride B.W., Hanigan M.D., France J. (2008). Phosphorus utilization and environmental and economic implications of reducing phosphorus pollution from Ontario dairy cows. J. Dairy Sci., 91: 241–246. Search in Google Scholar

Khachlouf K., Hamed H., Gdoura R., Gargouri A. (2019). Effects of dietary zeolite supplementation on milk yield and composition and blood minerals status in lactating dairy cows. J. Appl. Anim., 47: 54–62. Search in Google Scholar

Kholif A.E., Hassan A.A., El Ashry G.M., Bakr M.H., El-Zaiat H.M., Olafadehan O.A., Sallam S.M.A. (2021). Phytogenic feed additives mixture enhances the lactational performance, feed utilization and ruminal fermentation of Friesian cows. Anim. Biotech., 32: 708–718. Search in Google Scholar

Kiczorowska B., Samolińska W., Al-Yasiry A.R.M., Kiczorowski P., Winiarska-Mieczan A. (2017). The natural feed additives as immunostimulants in monogastric animal nutrition–a review. Ann. Anim. Sci., 17: 605–625. Search in Google Scholar

Kikusato M. (2021). Phytobiotics to improve health and production of broiler chickens: functions beyond the antioxidant activity. Anim. Biosci., 34: 345. Search in Google Scholar

Klebaniuk R., Grela E.R., Kowalczuk-Vasilev E., Olcha M., Góźdź J. (2014). Effectiveness of using herbal mixtures in organic cattle breeding (in Polish). Wiad. Zoot., 52: 56–63. Search in Google Scholar

Klebaniuk R., Kowalczuk-Vasilev E., Bąkowski M., Rocki G., Grela E.R., Kiczorowska B., Matras J., Widz J., Kępka K. (2017). Effectiveness of herbal mixture use (in Polish). Med. Weter., 73: 751–755. Search in Google Scholar

Klop G., Ellis J.L., Blok M.C., Brandsma G.G., Bannink A., Dijkstra J. (2014). Variation in phosphorus content of milk from dairy cattle as affected by differences in milk composition. J. Agric. Sci., 152: 860–869. Search in Google Scholar

Korać R.S., Huremović J., Žero S., Ljubijankić N. (2023). Content of metals in cow, sheep and goat milk samples. Bull. Chem. Technol. Bosnia Herzeg., 60: 1–6. Search in Google Scholar

Kozłowska M., Laudy A.E., Przybył J., Ziarno M., Majewska E. (2015). Chemical composition and antibacterial activity of some medicinal plants from the Lamiaceae family. Acta Pol. Pharm., 72: 757–767. Search in Google Scholar

Krawęcka A., Sobota A., Ivanišová E., Harangozo Ľ., Valková V., Zielińska E., Mildner-Szkudlarz S. (2022). Effect of black cumin cake addition on the chemical composition, glycemic index, anti-oxidant activity, and cooking quality of durum wheat pasta. Molecules, 27: 6342. Search in Google Scholar

Kumar M., Kumar V., Roy D., Kushwaha R., Vaiswani S. (2014). Application of herbal feed additives in animal nutrition –a review. Int. J. Livest. Res., 4: 1–8. Search in Google Scholar

Kuralkar P., Kuralkar S.V. (2021). Role of herbal products in animal production –an updated review. J. Ethnopharmacol., 278: 114246. Search in Google Scholar

Kurek Ł., Lutnicki K., Kluciński W., Kleczkowski M., Brodzki P., Marczuk J., Gołyński M. (2015). Effect of hypocalcemia on parenchymal organ function in cows at the peak of lactation (in Polish). Med. Weter., 71: 307–311. Search in Google Scholar

López-Alonso M., Miranda M. (2020). Copper supplementation, a challenge in cattle. Animals, 10: 1890. Search in Google Scholar

Luna D., López-Alonso M., Cedeño Y., Rigueira L., Pereira V., Miranda M. (2019). Determination of essential and toxic elements in cattle blood: serum vs plasma. Animals, 9: 465. Search in Google Scholar

Mahen P.J., Williams H.J., Smith R.F., Grove-White D. (2018). Effect of blood ionized calcium concentration at calving on fertility outcomes in dairy cattle. Vet Rec., 83: 263. Search in Google Scholar

Manuelian C.L., Penasa M., Visentin G., Zidi A., Cassandro M., De Marchi M. (2018). Mineral composition of cow milk from multi-breed herds. Anim. Sci. J., 89: 1622–1627. Search in Google Scholar

Mascitelli L., Goldstein M.R. (2014). Inhibition of iron absorption by polyphenols as an anticancer mechanism. In: Polyphenols in Human Health and Disease. Acad. Press., pp. 1283–1286. Search in Google Scholar

Mehra R., Singh R., Nayan V., Buttar H.S., Kumar N., Kumar S., Kumar H. (2021). Nutritional attributes of bovine colostrum components in human health and disease: a comprehensive review. Food Biosci., 40: 100907. Search in Google Scholar

Meir Y.A.B., Shaani Y., Bikel D., Portnik Y., Jacoby S., Moallem U., Frank E. (2023). Reducing dietary sodium of dairy cows fed a low-roughages diet affect intake and feed efficiency, but not yield. Anim. Nutr., 12: 1–6. Search in Google Scholar

Mirowski A. (2019). Utility of herbs in cattle nutrition (in Polish). Życie Wet., 92: 131–133. Search in Google Scholar

Mordak R., Dobrzański Z., Kupczyński R. (2021). Relationships among macro-minerals, other selected serum markers of bone profile and milk components of dairy cows during late lactation. Ann. Anim. Sci., 21: 887–898. Search in Google Scholar

Muttepawar S.S., Jadhav S.B., Kankudate A.D., Sanghai S.D., Usturge D.R., Chavare S.S. (2014). A review on bioavailability enhancers of herbal origin. Word J. Pharm. Sci., 3: 667–677. Search in Google Scholar

NASEM (2021). National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Dairy Cattle: Eighth Revised Edition. Washington, DC: The National Academies Press. Search in Google Scholar

Nogalska A., Momot M., Sobczuk-Szul M., Pogorzelska-Przybyłek P., Nogalski Z. (2017). Calcium and magnesium content in the milk of high-yielding cows. J. Elem., 22: 809–815. Search in Google Scholar

Nozad S., Ramin A.G., Moghadam G., Asri-Rezaei S., Babapour A., Ramin S. (2012). Relationship between blood urea, protein, creatinine, triglycerides and macro-mineral concentrations with the quality and quantity of milk in dairy Holstein cows. Vet. Res. Forum., 3: 55. Search in Google Scholar

Orjales I., Herrero-Latorre C., Miranda M., Rey-Crespo F., Rodríguez-Bermúdez R., López-Alonso M. (2018). Evaluation of trace element status of organic dairy cattle. Animal, 12: 1296–1305. Search in Google Scholar

Paskudzka A., Kołodziejczyk D., Socha S. (2018). The use of herbs in animals. Acta Sci. Pol. Zootech., 17: 3–14. Search in Google Scholar

Pilarczyk J., Wójcik P., Czerniak P., Sablik B., Pilarczyk A., Tomza-Marciniak A. (2013). Concentrations of toxic heavy metals and trace elements in raw milk of Simmental and Holstein-Friesian cows from organic farm. Environ. Monit. Assess., 185: 8383–8392. Search in Google Scholar

Proskura N., Podlasińska J., Proskura W.S., Frost-Rutkowska A., Dybus A., Szydłowski K. (2017). Concentrations of macroelements and trace elements in milk of Jersey cows. Indian J. Anim. Res., 51: 89–92. Search in Google Scholar

Puppel K., Kuczyńska B. (2016). Metabolic profiles of cow’s blood; a review. J. Sci. Food Agric., 96: 4321–4328. Search in Google Scholar

Rabiei S., Zahedi M., Abtahi M., Doustmohammadian A., Dadkhah M., Zoghi T., Hajigholam-Saryazdi M. (2021). Consumption of milk and dairy products in Iranian population; barriers and facilitators. Clin. Nutr. Exp., 38: 1–23. Search in Google Scholar

Redoy M.R.A., Shuvo A.A.S., Cheng L., Al-Mamun M. (2020). Effect of herbal supplementation on growth, immunity, rumen histology, serum antioxidants and meat quality of sheep. Animal, 14: 2433–2441. Search in Google Scholar

Rivera-Chacon R., Castillo-Lopez E., Ricci S., Petri R.M., Reisinger N., Zebeli Q. (2022). Supplementing a phytogenic feed additive modulates the risk of subacute rumen acidosis, rumen fermentation and systemic inflammation in cattle fed acidogenic diets. Animals, 12: 1201. Search in Google Scholar

Saha S., Piazza M., Bittante G., Gallo L. (2021). Macro- and micro-mineral composition of milk from purebred Holsteins and four generations of three-breed rotational crossbred cows from Viking Red, Montbéliarde and Holstein sires. Ital. J. Anim. Sci., 20: 447–452. Search in Google Scholar

Sahraeian S., Rashidinejad A., Golmakani M.T. (2024). Recent advances in the conjugation approaches for enhancing the bioavailability of polyphenols. F. Hydro., 146: 109221. Search in Google Scholar

Seyfaddinov S. (2022). What is the share of balanced quality feed? J. Appl. Sci., 5: 21–26. Search in Google Scholar

Shan C.H., Guo J., Sun X., Li N., Yang X., Gao Y., Zhao J.J. (2018). Effects of fermented Chinese herbal medicines on milk performance and immune function in late-lactation cows under heat stress conditions. J. Anim. Sci., 96: 4444–4457. Search in Google Scholar

Sharma N., Kundu S.S., Tariq H., Mani V., Malhotra R. (2021). Effect of fat and protein along with polyherbal preparation on reproductive health of periparturient Karan Fries cows. Indian J. Anim. Res., 55: 657–62. Search in Google Scholar

Shilpashree B.G., Arora S., Chawla P., Sharma V. (2022). A comparison of zinc interactions with succinylated milk protein concentrate and sodium caseinate. LWT, 157: 113116. Search in Google Scholar

Shkembi B., Huppertz T. (2021). Influence of dairy products on bio-availability of zinc from other food products: A review of complementarity at a meal level. Nutrition, 13: 4253. Search in Google Scholar

Singleton V.L., Rossi J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16: 144–158. Search in Google Scholar

Spek J.W., Bannink A., Gort G., Hendriks W.H., Dijkstra J. (2012). Effect of sodium chloride intake on urine volume, urinary urea excretion, and milk urea concentration in lactating dairy cattle. J. Dairy Sci., 95: 7288–7298. Search in Google Scholar

Stobiecka M., Król J., Brodziak A., Klebaniuk R., Kowalczuk-Vasilev E. (2023). Effects of supplementation with an herbal mixture on the antioxidant capacity of milk. Animals, 13: 2013. Search in Google Scholar

Stocco G., Summer A., Malacarne M., Cecchinato A., Bittante G. (2019). Detailed macro-and micromineral profile of milk: Effects of herd productivity, parity, and stage of lactation of cows of 6 dairy and dual-purpose breeds. J. Dairy Sci., 102: 9727–9739. Search in Google Scholar

Strzetelski J.A., Brzóska F., Kowalski Z.M., Osięgłowski S. (2014). Nutritional recommendations for ruminants and feed value tables (in Polish). Kraków, Poland, National Research Institute of Animal Production, 287 pp. Search in Google Scholar

Sun F., Cao Y., Cai C., Li S., Yu C., Yao J. (2016). Regulation of nutritional metabolism in transition dairy cows: Energy homeostasis and health in response to post-ruminal choline and methionine. PloS one, 11(8), e0160659. Search in Google Scholar

Tamminen L.M., Emanuelson U., Blanco-Penedo I. (2018). Systematic review of phytotherapeutic treatments for different farm animals under European conditions. Front. Vet. Sci., 5: 140. Search in Google Scholar

Toscano A., Giannuzzi D., Pegolo S., Vanzin A., Bisutti V., Gallo L., Trevisi E., Cecchinato A., Schiavon S. (2023). Associations between the detailed milk mineral profile, milk composition, and metabolic status in Holstein cows. J. Dairy Sci., 106: 6577–6591. Search in Google Scholar

Tsiamadis V., Banos G., Panousis N., Kritsepi-Konstantinou M., Arsenos G., Valergakis G.E. (2016). Genetic parameters of calcium, phosphorus, magnesium, and potassium serum concentrations during the first 8 days after calving in Holstein cows. J. Dairy Sci., 99: 5535–5544. Search in Google Scholar

Tuhy Ł., Dmytryk A., Samoraj M., Chojnacka K. (2018). Trace elements in animal nutrition. In: Recent advances in trace elements, Chojnacka K., Saeid A. (eds). Wiley Blackwell, pp. 319–337. Search in Google Scholar

Van Emon M., Sanford C., McCoski S. (2020). Impacts of bovine trace mineral supplementation on maternal and offspring production and health. Animals, 10: 2404. Search in Google Scholar

Visentin G., De Marchi M., Berry D.P., McDermott A., Fenelon M.A., Penasa M., McParland S. (2017). Factors associated with milk processing characteristics predicted by mid-infrared spectroscopy in a large database of dairy cows. J. Dairy Sci., 100: 3293–3304. Search in Google Scholar

Wächter S., Cohrs I., Golbeck L., Wilkens M.R., Grünberg W. (2022). Effects of restricted dietary phosphorus supply to dry cows on periparturient calcium status. J. Dairy Sci., 105: 748–760. Search in Google Scholar

Wilkens M.R., Muscher-Banse A.S. (2020). Regulation of gastrointestinal and renal transport of calcium and phosphorus in ruminants. Animal, 14: 29–43. Search in Google Scholar

Winnicka A. (2021) Reference values for basic laboratory tests in veterinary medicine (in Polish). SGGW, Warsaw, Poland, 113 pp. Search in Google Scholar

Wójtowski J.A., Majcher M., Danków R., Pikul J., Mikołajczak P., Molińska-Glura M., Stanisławski D. (2023). Effect of herbal feed additives on goat milk volatile flavor compounds. Foods, 12: 2963. Search in Google Scholar

Xie Y., Chen Z., Wang D., Chen G., Sun X., He Q., Sun J. (2020). Effects of fermented herbal tea residues on the intestinal micro-biota characteristics of Holstein heifers under heat stress. Front. Microbiol., 11: 1014. Search in Google Scholar

Yaremchuk O.S., Farionik T.V. (2022). Effect of chelate compounds of microelements on the organism of agricultural animals. Mod. Eng. Innov. Technol., 23: 99–115. Search in Google Scholar

Yazlık M.O., Çolakoğlu H.E., Pekcan M., Kaya U., Küplülü Ş., Kaçar C., Vural M.R. (2021). Effects of injectable trace element and vitamin supplementation during the gestational, peri-parturient, or early lactational periods on neutrophil functions and pregnancy rate in dairy cows. Anim. Reprod. Sci., 225: 106686. Search in Google Scholar

Żarczyńska K., Żarczyński P., Sobiech P., Snarska A., Stopyra A., Wieteska M., Płaczek A. (2017). The effect of micronutrient deficiencies on the health status of transition cows. J. Elem., 22: 1223–1234. Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Ciencias de la vida, Biotecnología, Zoología, Medicina, Medicina veterinaria