Acceso abierto

Effects of Dietary Algae Meal Supplementation on Growth, Whole-Body Composition, Histological and Immune Responses of Pacific White Shrimp, Penaeus Vannamei

, , , , , ,  y   
24 jul 2025

Cite
Descargar portada

Abdelghany M.F., El-Sawy H.B., Abd El-hameed S.A.A., Khames M.K., Abdel-Latif H.M.R., Naiel M.A.E. (2020). Effects of dietary Nannochloropsis oculata on growth performance, serum biochemical parameters, immune responses, and resistance against Aeromonas veronii challenge in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 107: 277–288. Search in Google Scholar

Abd El-Rahman A.M., Khattab Y.A., Shalaby A.M. (2009). Micrococcus luteus and Pseudomonas species as probiotics for promoting the growth performance and health of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol., 27: 175–180. Search in Google Scholar

Adeshina I., Abubakar M.I.-O., Ajala B.E. (2020). Dietary supplementation with Lactobacillus acidophilus enhanced the growth, gut morphometry, antioxidant capacity, and the immune response in juveniles of the common carp, Cyprinus carpio. Fish. Physiol. Biochem., 46: 1375–1385. Search in Google Scholar

Alam Md.S., Teshima S., Yaniharto D., Ishikawa M., Koshio S. (2002). Dietary amino acid profiles and growth performance in juvenile kuruma prawn Marsupenaeus japonicus. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 133: 289–297. Search in Google Scholar

Amaya E.A., Davis D.A., Rouse D.B. (2007). Replacement of fish meal in practical diets for the Pacific white shrimp (Litopenaeus vannamei) reared under pond conditions. Aquaculture, 262: 393–401. Search in Google Scholar

Ambasankar K., Dayal J.S., Vasagam K.P.K., Sivaramakrishnan T., Sandeep K.P., Panigrahi A., Raja R.A., Burri L., Vijayan K.K. (2022). Growth, fatty acid composition, immune-related gene expression, histology and haematology indices of Penaeus vannamei fed graded levels of Antarctic krill meal at two different fishmeal concentrations. Aquaculture, 553: 738069. Search in Google Scholar

Andersen H.J., Oksbjerg N., Young J.F., Therkildsen M. (2005). Feeding and meat quality –a future approach. Meat Sci., 70: 543–554. Search in Google Scholar

Apandi N.M., Mohamed R.M.S.R., Al-Gheethi A., Kassim A.H.M. (2019). Microalgal biomass production through phycoremediation of fresh market wastewater and potential applications as aquaculture feeds. Environ. Sci. Pollut. Res., 26: 3226–3242. Search in Google Scholar

APHA A.P.H. (2012). Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC. Search in Google Scholar

Argüello-Guevara W., Molina-Poveda C. (2013). Effect of binder type and concentration on prepared feed stability, feed ingestion and digestibility of Litopenaeus vannamei broodstock diets. Aquacult. Nutr., 19: 515–522. Search in Google Scholar

Ashour M., Elshobary M.E., El-Shenody R., Kamil A.-W., Abomohra A.E.-F. (2019). Evaluation of a native oleaginous marine microalga Nannochloropsis oceanica for dual use in biodiesel production and aquaculture feed. Biom. Bioen., 120: 439–447. Search in Google Scholar

Ashour M., Mabrouk M.M., Mansour A.I., Abdelhamid A.F., Kader M.F.A., Elokaby M.A., El-Nawsany M.M., Abdelwarith A.A., Younis E.M., Davies S.J. (2024). Impact of dietary administration of Arthrospira platensis free-lipid biomass on growth performance, body composition, redox status, immune responses, and some related genes of Pacific whiteleg shrimp, Litopenaeus vannamei. PloS One, 19: e0300748. Search in Google Scholar

Ayiku S., Shen J., Tan B., Dong X., Liu H. (2020). Effects of dietary yeast culture on shrimp growth, immune response, intestinal health and disease resistance against Vibrio harveyi. Fish Shellfish Immunol., 102: 286–295. Search in Google Scholar

Bardera G., Owen M.A.G., Façanha F.N., Alcaraz-Calero J.M., Sloman K.A., Alexander M.E. (2020). Assessing feed attractability in Pacific white shrimp (Litopenaeus vannamei) using an automated tracking software. Aquaculture, 529: 735692. Search in Google Scholar

Benemann J. (2013). Microalgae for Biofuels and Animal Feeds. Energies, 6: 5869–5886. Search in Google Scholar

Boonanuntanasarn S., Ditthab K., Jangprai A., Nakharuthai C. (2019). Effects of microencapsulated saccharomyces cerevisiae on growth, hematological indices, blood chemical, and immune parameters and intestinal morphology in striped catfish, Pangasianodon hypophthalmus. Prob. Antimicrob. Prot., 11: 427–437. Search in Google Scholar

Carneiro M., Cicchi B., Maia I.B., Pereira H., Zittelli G.C., Varela J., Malcata F.X., Torzillo G. (2020). Effect of temperature on growth, photosynthesis and biochemical composition of Nannochloropsis oceanica, grown outdoors in tubular photobioreactors. Algal Res., 49: 101923. Search in Google Scholar

Chaabani A., Labonne L., Tercero C.A., Picard J.-P., Advenier C., Durrieu V., Rouilly A., Skiba F., Evon P. (2020). Optimization of vacuum coating conditions to improve oil retention in Trout feed. Aquacult. Eng., 91: 102127. Search in Google Scholar

Chen M., Chen X.-Q., Tian L.-X., Liu Y.-J., Niu J. (2020). Improvement of growth, intestinal short-chain fatty acids, non-specific immunity and ammonia resistance in Pacific white shrimp (Litopenaeus vannamei) fed dietary water-soluble chitosan and mixed probiotics. Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 236: 108791. Search in Google Scholar

Cho C.Y., Bureau D.P. (1997). Reduction of waste output from salmonid aquaculture through feeds and feeding. Progressive Fish-Culturist, 59: 155–160. Search in Google Scholar

Cunniff P. (1995). Association of Official Analytical Chemists. Official Methods of AOAC Analysis. Search in Google Scholar

Cuzon G., Guillaume J., Cahu C. (1994). Composition, prepara- tion and utilization of feeds for Crustacea. Aquaculture, 124: 253–267. Search in Google Scholar

Eissa E.-S., Ahmed N.H., El-Badawi A., Munir M., Al-Kareem O., Eissa M., Hussien E., Sakr S. (2022). Assessing the influence of the inclusion of Bacillus subtilis AQUA-GROW® as feed additive on the growth performance, feed utilization, immunological responses and body composition of the Pacific white shrimp, Litopenaeus vannamei. Aquacult. Res., 53. Search in Google Scholar

Elabd H., Wang H.-P., Shaheen A., Matter A. (2020). Nano spirulina dietary supplementation augments growth, antioxidative and immunological reactions, digestion, and protection of Nile tilapia, Oreochromis niloticus, against Aeromonas veronii and some physical stressors. Fish Physiol. Biochem., 46: 2143–2155. Search in Google Scholar

El-Kassas S., Abdo S.E., Abosheashaa W., Mohamed R., Moustafa E.M., Helal M.A., El-Naggar K. (2020). Growth performance, serum lipid profile, intestinal morphometry, and growth and lipid indicator gene expression analysis of mono-sex Nile tilapia fed Moringa oleifera leaf powder. Aquacult. Rep., 18: 100422. Search in Google Scholar

FAO (2023). Gateway to poultry production and products. Rome, Italy: FAO. Search in Google Scholar

FAO (2024). The State of World Fisheries and Aquaculture. Available from https://www.fao.org/publications/home/fao-flagship-publications/the-state-of-world-fisheries-and-aquaculture/en. Search in Google Scholar

Felix N., Manikandan K., Uma A., Kaushik S.J. (2023). Evaluation of single cell protein on the growth performance, digestibility and immune gene expression of Pacific white shrimp, Penaeus vannamei. Anim. Feed Sci. Technol., 296: 115549. Search in Google Scholar

Fernández Gimenez A.V., Fenucci J.L., Petriella A.M. (2004). The effect of vitamin E on growth, survival and hepatopancreas structure of the Argentine red shrimp Pleoticus muelleri Bate (Crustacea, Penaeidea). Aquacult. Res., 35: 1172–1178. Search in Google Scholar

Global Seafood Alliance (2006). Vacuum process supports high oil content in feed coatings –Responsible Seafood Advocate. Available from https://www.globalseafood.org/advocate/vacuum-process-supports-high-oil-content-in-feed-coatings/. Search in Google Scholar

Gong Y., Bandara T., Huntley M., Johnson Z.I., Dias J., Dahle D., Sørensen M., Kiron V. (2019). Microalgae Scenedesmus sp. as a potential ingredient in low fishmeal diets for Atlantic salmon (Salmo salar L.). Aquaculture, 501: 455–464. Search in Google Scholar

Gong Y., Sørensen S.L., Dahle D., Nadanasabesan N., Dias J., Valente L.M.P., Sørensen M., Kiron V. (2020). Approaches to improve utilization of Nannochloropsis oceanica in plant-based feeds for Atlantic salmon. Aquaculture, 522: 735122. Search in Google Scholar

Habib Y.J., Zhang Z. (2020). The involvement of crustaceans toll-like receptors in pathogen recognition. Fish Shellfish Immunol., 102: 169–176. Search in Google Scholar

Hanel R., Broekman D., De Graaf S., Schnack D. (2007). Partial replacement of fishmeal by lyophylized powder of the microalgae Spirulina platensis in Pacific white shrimp diets. Open Marine Biol. J., 1. Search in Google Scholar

Hassona N.N., Zayed M.M., Eltras W.F., Mohamed R.A. (2020). Dietary supplementation of Tribulus terrestris extract improves growth and reproductive performances of the male Nile tilapia (Oreochromis niloticus). Aquac. Res., 51: 4245–4254. Search in Google Scholar

Higashi B., Mariano T.B., De Abreu Filho B.A., Gonçalves R.A.C., De Oliveira A.J.B. (2020). Effects of fructans and probiotics on the inhibition of Klebsiella oxytoca and the production of short-chain fatty acids assessed by NMR spectroscopy. Carbohyd. Polym., 248: 116832. Search in Google Scholar

Hikima S., Hikima J., Rojtinnakorn J., Hirono I., Aoki T. (2003). Characterization and function of kuruma shrimp lysozyme possessing lytic activity against Vibrio species. Gene, 316: 187–195. Search in Google Scholar

Hoffmann J.A., Reichhart J.-M. (2002). Drosophila innate immunity: an evolutionary perspective. Nat. Immunol., 3: 121–126. Search in Google Scholar

Hooshyar Y., Abedian Kenari A., Paknejad H., Gandomi H. (2020). Effects of Lactobacillus rhamnosus ATCC 7469 on different parameters related to health status of rainbow trout (Oncorhynchus mykiss) and the protection against Yersinia ruckeri. Prob. Antimicrob. Prot., 12: 1370–1384. Search in Google Scholar

Ishida Y., Fujita T., Asai K. (1981). New detection and separation method for amino acids by high-performance liquid chromatography. J. Chromatogr. A, 204: 143–148. Search in Google Scholar

James R., Sampath K., Thangarathinam R., Vasudevan I. (2006). Effect of dietary spirulina level on growth, fertility, coloration and leucocyte count in red swordtail, Xiphophorus helleri. Israeli J. Aquacult.-Bamidgeh, 58. Search in Google Scholar

Ju Z.Y., Deng D.-F., Dominy W. (2012). A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Aquaculture, 354–355: 50–55. Search in Google Scholar

Katiyar R., Arora A. (2020). Health promoting functional lipids from microalgae pool: A review. Algal Res., 46: 101800. Search in Google Scholar

Khalila H.S., Fayed W.M., Mansour A.T., Srour T.M., Omar E.A., Darwish S., Nour A. (2018). Dietary supplementation of spirulina, Arthrospira platensis, with plant protein sources and their effects on growth, feed utilization and histological changes in Nile tilapia, Oreochromis niloticus. J. Aquac. Res. Dev., 9. Search in Google Scholar

Kizhakkekarammal Puthiyedathu S., Angel J.R.J., Thirugnanamurthy S., Suresh S., Nathamuni S., Raja R.A., Kumar S., Tomy S., Dayal J.S., Changaramkumarth Paran B. (2022). Effect of dietary C-phycocyanin on growth, survival, haematology, immune response, gut microbiome and disease resistance of Pacific white shrimp, Penaeus vannamei. Aquacult. Res., 53: 6292–6309. Search in Google Scholar

Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165: 1332–1345. Search in Google Scholar

Li E., Xu C., Wang X., Wang S., Zhao Q., Zhang M., Qin J.G., Chen L. (2018). Gut microbiota and its modulation for healthy farming of Pacific white shrimp Litopenaeus vannamei. Rev. Fish. Sci. Aquacult., 26: 381–399. Search in Google Scholar

Lin Y.-C., Tayag C.M., Huang C.-L., Tsui W.-C., Chen J.-C. (2010). White shrimp Litopenaeus vannamei that had received the hot-water extract of Spirulina platensis showed earlier recovery in immunity and up-regulation of gene expressions after pH stress. Fish Shellfish Immunol., 29: 1092–1098. Search in Google Scholar

Liu L., Cai X., Ai Y., Li J., Long H., Ren W., Huang A., Zhang X., Xie Z. (2022). Effects of Lactobacillus pentosus combined with Arthrospira platensis on the growth performance, immune response, and intestinal microbiota of Litopenaeus vannamei. Fish Shellfish Immunol., 120: 345–352. Search in Google Scholar

Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25: 402–408. Search in Google Scholar

Lukwambe B., Nicholaus R., Zhang D., Yang W., Zhu J., Zheng Z. (2019). Successional changes of microalgae community in response to commercial probiotics in the intensive shrimp (Litopenaeus vannamei Boone) culture systems. Aquaculture, 511: 734257. Search in Google Scholar

Mabrouk M.M., Ashour M., Labena A., Zaki M.A.A., Abdelhamid A.F., Gewaily M.S., Dawood M.A.O., Abualnaja K.M., Ayoub H.F. (2022). Nanoparticles of Arthrospira platensis improves growth, antioxidative and immunological responses of Nile tilapia (Oreochromis niloticus) and its resistance to Aeromonas hydrophila. Aquacult. Res., 53: 125–135. Search in Google Scholar

Maehre H.K., Edvinsen G.K., Eilertsen K.-E., Elvevoll E.O. (2016). Heat treatment increases the protein bioaccessibility in the red seaweed dulse (Palmaria palmata), but not in the brown seaweed winged kelp (Alaria esculenta). J. Appl. Phycol., 28: 581–590. Search in Google Scholar

Mansour A.T., Alsaqufi A.S., Alkhamis Y.A., Al-Gazar F.F., Zaki M.A., Nour A.A.M., Ramadan K.M. (2021). The evaluation of Arthrospira platensis bioactivity and their dietary supplementation to Nile tilapia vegetarian diet on growth performance, feed utilization, body composition and hemato-biochemical parameters. Ann. Anim. Sci., 21: 1061–1080. Search in Google Scholar

Mansour A.T., Ashour M., Abbas E.M., Alsaqufi A.S., Kelany M.S., El-Sawy M.A., Sharawy Z.Z. (2022). Growth performance, immune-related and antioxidant genes expression, and gut bacterial abundance of Pacific white leg shrimp, Litopenaeus vannamei, dietary supplemented with natural astaxanthin. Front. Physiol., 13: 874172. Search in Google Scholar

Mohamed R.A., Yousef Y.M., El-Tras W.F., Khalafallaa M.M. (2021). Dietary essential oil extract from sweet orange (Citrus sinensis) and bitter lemon (Citrus limon) peels improved Nile tilapia performance and health status. Aquacult. Res., 52: 1463–1479. Search in Google Scholar

Nakagawa H., Gomez-Diaz G. (1995). Usefulness of Spirulina sp. meal as feed additive for giant freshwater prawn, Macrobrachium rosenbergii. Aquacult. Sci., 43: 521–526. Search in Google Scholar

Nayak S.K., Mukherjee S.C. (2011). Screening of gastrointestinal bacteria of Indian major carps for a candidate probiotic species for aquaculture practices. Aquacult. Res., 42: 1034–1041. Search in Google Scholar

Pakravan S., Akbarzadeh A., Sajjadi M.M., Hajimoradloo A., Noori F. (2017). Partial and total replacement of fish meal by marine microalga Spirulina platensis in the diet of Pacific white shrimp Litopenaeus vannamei: Growth, digestive enzyme activities, fatty acid composition and responses to ammonia and hypoxia stress. Aquac. Res., 48: 5576–5586. Search in Google Scholar

Palmegiano G.B., Agradi E., Forneris G., Gai F., Gasco L., Rigamonti E., Sicuro B., Zoccarato I. (2005). Spirulina as a nutrient source in diets for growing sturgeon (Acipenser baeri). Aquaclt. Res., 36: 188–195. Search in Google Scholar

Palmegiano G.B., Gai F., Daprà F., Gasco L., Pazzaglia M., Peiretti P.G. (2008). Effects of spirulina and plant oil on the growth and lipid traits of white sturgeon (Acipenser transmontanus) finger-lings. Aquacult. Res., 39: 587–595. Search in Google Scholar

Qingman C., Wenxue L., Wenhao Z., Chunying Y. (2019). Effects of Chlorella vulgaris on immuno-related factors and their expression in Penaeus vannamei. Israeli J. Aquacult.-Bamidgeh, 71. Search in Google Scholar

Raja R.A., Sridhar R., Balachandran C., Palanisammi A., Ramesh S., Nagarajan K. (2017). Pathogenicity profile of Vibrio parahaemolyticus in farmed Pacific white shrimp, Penaeus vannamei. Fish Shellfish Immunol., 67: 368–381. Search in Google Scholar

Rosas V.T., Poersch L.H., Romano L.A., Tesser M.B. (2019). Feasibility of the use of Spirulina in aquaculture diets. Rev. Aquacult., 11: 1367–1378. Search in Google Scholar

Sanchez D.R., Fox J.M., Lawrence A.L., Castille F.L., Dunsford B. (2007). A methodology for evaluation of dietary feeding stimulants for the Pacific white shrimp, Litopenaeus vannamei. J. World Aquacult. Soc., 36: 14–23. Search in Google Scholar

Sarker P.K., Kapuscinski A.R., Lanois A.J., Livesey E.D., Bernhard K.P., Coley M.L. (2016). Towards sustainable aquafeeds: Complete substitution of fish oil with marine microalga Schizochytrium sp. improves growth and fatty acid deposition in juvenile Nile tilapia (Oreochromis niloticus). PLoS One, 11: e0156684. Search in Google Scholar

Sharawy Z.Z., Ashour M., Abbas E., Ashry O., Helal M., Nazmi H., Kelany M., Kamel A., Hassaan M., Rossi W., El-Haroun E., Goda A. (2020). Effects of dietary marine microalgae, Tetraselmis suecica, on production, gene expression, protein markers and bacterial count of Pacific white shrimp Litopenaeus vannamei. Aquacult. Res., 51: 2216–2228. Search in Google Scholar

Sharawy Z.Z., Ashour M., Labena A., Alsaqufi A.S., Mansour A.T., Abbas E.M. (2022). Effects of dietary Arthrospira platensis nanoparticles on growth performance, feed utilization, and growth-related gene expression of Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 551: 737905. Search in Google Scholar

Shi Z., Li X.-Q., Chowdhury M.A.K., Chen J.-N., Leng X.-J. (2016). Effects of protease supplementation in low fish meal pelleted and extruded diets on growth, nutrient retention and digestibility of gibel carp, Carassius auratus gibelio. Aquaculture, 460: 37–44. Search in Google Scholar

Sonakowska-Czajka L., Śróbka J., Ostróżka A., Rost-Roszkowska M. (2021). Postembryonic development and differentiation of the midgut in the freshwater shrimp Neocaridina davidi (Crustacea, Malacostraca, Decapoda) larvae. J. Morphol., 282: 48–65. Search in Google Scholar

Suresh A.V., Nates S. (2011). Attractability and palatability of protein ingredients of aquatic and terrestrial animal origin, and their practical value for blue shrimp, Litopenaeus stylirostris fed diets formulated with high levels of poultry byproduct meal. Aquaculture, 319: 132–140. Search in Google Scholar

Tibbetts S.M., Yasumaru F., Lemos D. (2017). In vitro prediction of digestible protein content of marine microalgae (Nannochloropsis granulata) meals for Pacific white shrimp (Litopenaeus vannamei) and rainbow trout (Oncorhynchus mykiss). Algal Res., 21: 76–80. Search in Google Scholar

Valente L.M.P., Custódio M., Batista S., Fernandes H., Kiron V. (2019). Defatted microalgae (Nannochloropsis sp.) from biorefinery as a potential feed protein source to replace fishmeal in European sea bass diets. Fish Physiol. Biochem., 45: 1067–1081. Search in Google Scholar

Venou B., Alexis M.N., Fountoulaki E., Haralabous J. (2009). Performance factors, body composition and digestion characteristics of gilthead sea bream (Sparus aurata) fed pelleted or extruded diets. Aquacult. Nutr., 15: 390–401. Search in Google Scholar

Walker A.B., Berlinsky D.L. (2011). Effects of partial replacement of fish meal protein by microalgae on growth, feed intake, and body composition of Atlantic cod. N Am. J. Aquac., 73: 76–83. Search in Google Scholar

Wang Y., Li M., Filer K., Xue Y., Ai Q., Mai K. (2017). Replacement of fish oil with a DHA-rich Schizochytrium meal on growth performance, activities of digestive enzyme and fatty acid profile of Pacific white shrimp (Litopenaeus vannamei) larvae. Aquacult. Nutr., 23: 1113–1120. Search in Google Scholar

Wang Y.-C., Hu S.-Y., Chiu C.-S., Liu C.-H. (2019). Multiple-strain probiotics appear to be more effective in improving the growth performance and health status of white shrimp, Litopenaeus vannamei, than single probiotic strains. Fish Shellfish Immunol., 84: 1050–1058. Search in Google Scholar

Xie S., Liu Y., Zeng S., Niu J., Tian L. (2016). Partial replacement of fish-meal by soy protein concentrate and soybean meal based protein blend for juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 464: 296–302. Search in Google Scholar

Xiong J., Jin M., Yuan Y., Luo J.-X., Lu Y., Zhou Q.-C., Liang C., Tan Z.-L. (2018). Dietary nucleotide-rich yeast supplementation improves growth, innate immunity and intestinal morphology of Pacific white shrimp (Litopenaeus vannamei). Aquacult. Nutr., 24: 1425–1435. Search in Google Scholar

Ye X., Gao F.Y., Zheng Q.M., Bai J.J., Wang H., Lao H.H., Jian Q. (2009). Cloning and characterization of the tiger shrimp lysozyme. Mol. Biol. Rep., 36: 1239–1246. Search in Google Scholar

Zaki M.A., Ashour M., Heneash A.M., Mabrouk M.M., Alprol A.E., Khairy H.M., Nour A.M., Mansour A.T., Hassanien H.A., Ga- ber A. (2021). Potential applications of native cyanobacterium isolate (Arthrospira platensis NIOF17/003) for biodiesel production and utilization of its byproduct in marine rotifer (Brachionus plicatilis) production. Sustainability, 13: 1769. Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Ciencias de la vida, Biotecnología, Zoología, Medicina, Medicina veterinaria