Acceso abierto

Aquaculture And Climate Change: A Data-Driven Analysis

, , , , , , , , ,  y   
24 abr 2025

Cite
Descargar portada

Adamo S., Lovett M. (2011). Some like it hot: the effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. J. Exp Biol., 214: 1997–2004.Search in Google Scholar

Ahmed N., Diana J. (2015 a). Threatening “white gold”: Impacts of climate change on shrimp farming in coastal Bangladesh. Ocean Coast Manag., 114: 45–52.Search in Google Scholar

Ahmed N., Diana J.S. (2015 b). Coastal to inland: expansion of prawn farming for adaptation to climate change in Bangladesh. Aquac. Rep., 2: 67–76.Search in Google Scholar

Ahmed N., Diana J. (2016). Does climate change matter for freshwater aquaculture in Bangladesh? Reg. Environ. Change., 16: 1659–1669.Search in Google Scholar

Ahmed N., Turchini G. (2021). Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. J. Clean. Prod., 297: 126604.Search in Google Scholar

Alfaro A., Jeffs A., King N. (2014). Enabling and driving aquaculture growth in New Zealand through innovation. New Zeal. J. Marine Freshwater Res., 48: 311–313.Search in Google Scholar

Alleway H., Jones A., Theuerkauf S., Jones R. (2022). A global and regional view of the opportunity for climate-smart mariculture. Phil. Trans. R. Soc. B: Biol. Sci., 377: 20210128.Search in Google Scholar

Allison E.H., Perry A.L., Badjeck M.-C., Neil Adger W., Brown K., Conway D., Halls A.S., Pilling G.M., Reynolds J.D., Andrew N.L., Dulvy N.K. (2009). Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish., 10: 173–196.Search in Google Scholar

Anderson J., Asche F., Garlock T., Chu J. (2017). Aquaculture: its role in the future of food. World Agricultural Resources and Food Security (Frontiers of Economics and Globalization 17), Emerald Publishing Limited, pp. 159–173.Search in Google Scholar

Angel D., Jokumsen A., Lembo G. (2019). Aquaculture production systems and environmental interactions. Organic Aquaculture. https://doi.org/10.1007/978-3-030-05603-2_6.Search in Google Scholar

Asiedu B., Malcolm D., Iddrisu S. (2018). Assessing the economic impact of climate change in the small-scale aquaculture industry of Ghana, West Africa. AAS Open Res, 1: 26.Search in Google Scholar

Aubin J., Baruthio A., Mungkung R., Lazard J. (2015). Environmental performance of brackish water polyculture system from a life cycle perspective: a Filipino case study. Aquaculture, 435: 217–227.Search in Google Scholar

Ayer N.W., Tyedmers P.H. (2009). Assessing alternative aquaculture technologies: life cycle assessment of salmonid culture systems in Canada. J. Clean. Prod., 17: 362–373.Search in Google Scholar

Azra M.N., Noor M.I.M., Eales J., Sung Y.Y., Ghaffar M.A. (2022). What evidence exists for the impact of climate change on the physiology and behaviour of important aquaculture marine crustacean species in Asia? A systematic map protocol. Environ. Evid., 11: 9.Search in Google Scholar

Bakun A., Black B., Bograd S., García-Reyes M., Miller A., Rykaczewski R., Sydeman W. (2015). Anticipated effects of climate change on coastal upwelling ecosystems. Curr. Clim. Change Rep., 1: 85–93.Search in Google Scholar

Barange M., Bahri T., Beveridge M.C.M., Cochrane K.L., Funge-Smith S., Poulain F. (2018). Editors. Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture Technical Paper No. 627. Rome, FAO. 628.Search in Google Scholar

Barton A., Hales B., Waldbusser G.G., Langdon C., Feely R.A. (2012). The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnol. Oceanogr., 57: 698–710.Search in Google Scholar

Barton A., Waldbusser G.G., Feely R.A., Weisberg S.B., Newton J.A., Hales B., Cudd S., Eudeline B., Langdon C.J., Jefferds I., King T., Suhrbier A., McLaughlin K. (2015). Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography, 28: 146–159.Search in Google Scholar

Beemelmanns A., Zanuzzo F.S., Sandrelli R.M., Rise M.L., Gamperl A.K. (2021). The Atlantic salmon’s stress- and immune-related transcriptional responses to moderate hypoxia, an incremental temperature increase, and these challenges combined. G3: Genes, Genomes, Genet., 11: jkab102.Search in Google Scholar

Béné C., Barange M., Subasinghe R., Pinstrup-Andersen P., Merino G., Hemre G.-I., Williams M. (2015). Feeding 9 billion by 2050 – Putting fish back on the menu. Food Secur., 7: 261–274.Search in Google Scholar

Béné C., Arthur R., Norbury H., Allison E.H., Beveridge M., Bush S., Campling L., Leschen W., Little D., Squires D., Thilsted S.H., Troell M., Williams M. (2016). Contribution of fisheries and aqua-culture to food security and poverty reduction: Assessing the current evidence. World Dev., 79: 177–196.Search in Google Scholar

Bennett M., March A., Failler P. (2023). Blue farming potentials: Sustainable ocean farming strategies in the light of climate change adaptation and mitigation. Green Low-Carbon Economy, https://doi.org/10.47852/bonviewglce3202978Search in Google Scholar

Bergman K., Henriksson P.J., Hornborg S., Troell M., Borthwick L., Jonell M., Philis G., Ziegler F. (2020). Recirculating aquaculture is possible without major energy tradeoff: life cycle assessment of warmwater fish farming in Sweden. Environ. Sci. Technol., 54: 16062–16070.Search in Google Scholar

Boëchat I.G., Krüger A., Soares E.M., Figueredo C.C., Contin A.M., Pinheiro P.L., Abrantes G.H.P., Cardozo F.S., Gücker B. (2021). Fatty acids reveal aquaculture and drought effects on a large tropical reservoir. Sci. Total Environ., 755: 142660.Search in Google Scholar

Bostock J., Lane A., Hough C., Yamamoto K. (2016). An assessment of the economic contribution of EU aquaculture production and the influence of policies for its sustainable development. Aqua-cult. Int., 24: 699–733.Search in Google Scholar

Breitburg D, Levin L.A., Oschlies A., Grégoire M., Chavez F.P., Conley D.J., Garçon V., Gilbert D., Gutiérrez D., Isensee K., Jacinto G.S., Limburg K.E., Montes I., Naqvi S.W.A., Pitcher G.C., Rabalais N.N., Roman M.R., Rose K.A., Seibel B.A., Telszewski M., Yasuhara M., Zhang J. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359.Search in Google Scholar

Buck C., Wilkerson F., Parker A., Dugdale R. (2014). The influence of coastal nutrients on phytoplankton productivity in a shallow low inflow estuary, Drakes Estero, California (USA). Estuar. Coasts, 37: 847–863.Search in Google Scholar

Byrne M., Fitzer S. (2019) The impact of environmental acidification on the microstructure and mechanical integrity of marine invertebrate skeletons. Conserv. Physiol., 7.Search in Google Scholar

Cao L., Naylor R., Henriksson P., Leadbitter D., Metian M., Troell M., Zhang W. (2015). China’s aquaculture and the world’s wild fisheries. Science, 347: 133–135.Search in Google Scholar

Cao L., Halpern B.S., Troell M., Short R., Zeng C., Jiang Z., Liu Y., Zou C., Liu C., Liu S., Liu C., Chueng W.W.L. Cottrell R.S., DeClerk F., Gelcich S., Gephart J.A., Godo-Solo D., Kauli J.I., Micheli F., Naylor R.L., Payne H.J., Selig E.R., Sumaila U.R., Tigchelaar M. (2023). Vulnerability of blue foods to human-induced environmental change. Nat. Sustain., 6: 1186–1198.Search in Google Scholar

Carroll S., Coyne V. (2021). A proteomic analysis of the effect of ocean acidification on the haemocyte proteome of the South African abalone Haliotis midae. Fish Shellfish Immunol., https://doi.org/10.1016/j.fsi.2021.08.008Search in Google Scholar

Cascarano M.C., Stavrakidis-Zachou O., Mladineo I., Thompson K.D., Papandroulakis N., Katharios P. (2021). Mediterranean aquaculture in a changing climate: Temperature effects on pathogens and diseases of three farmed fish species. Pathogens, 10: 1205.Search in Google Scholar

Casimiro A.C.R., Garcia D.A.Z., Vidotto-Magnoni A.P.., Britton J.R., Agostinho A.A., de Almeida F.S., Orsi M.l. (2018). Escapes of non-native fish from flooded aquaculture facilities: the case of Paranapanema River, southern Brazil. Zoologia, 35: 1–6.Search in Google Scholar

Chan F., Barth J., Kroeker K., Lubchenco J., Menge B. (2019). The dynamics and impact of ocean acidification and hypoxia. Oceanography, 32: 62–71.Search in Google Scholar

Chan H.L., Cai J., Leung P.S. (2024). Aquaculture production and diversification: What causes what? Aquaculture, 583: 740626.Search in Google Scholar

Chand B.K, Trivedi R.K., Biswas A., Dubey S.K., Beg M.M. (2012 a). Study on impact of saline water inundation on freshwater aquaculture in Sundarban using risk analysis tools.. Explor. Anim. Med. Res., 2: 170–178.Search in Google Scholar

Chand B.K., Trivedi R.K., Dubey S.K., Beg M.M. (2012 b). Aquaculture in changing climate of Sundarban: Survey report on climate change vulnerabilities, aquaculture practices coping measures in Sagar and Basanti blocks of Indian Sundarban. West Bengal University of Animal Fishery Sciences.Search in Google Scholar

Chen C. (2017) Science mapping: A systematic review of the literature. J. Data Inform. Sci., 2: 1–40.Search in Google Scholar

Chen C. (2022). How to Use CiteSpace (6.1.R6), Lean Publishing, Victoria, Canada, http://leanpub.com/howtousecitespace.Search in Google Scholar

Chen J., Mueller V. (2018). Coastal climate change, soil salinity and human migration in Bangladesh. Nat. Clim. Change, 8: 981–985.Search in Google Scholar

Chen C., Song M. (2019). Visualizing a field of research: A methodology of systematic scientometric reviews. PLoS One, 14: e0223994.Search in Google Scholar

Chen Y., Liu E., Li C., Pan C., Zhao X., Wang Y., Ling Q. (2020). Effects of heat stress on histopathology, antioxidant enzymes, and transcriptomic profiles in gills of pikeperch Sander lucioperca. Aquaculture, 736277.Search in Google Scholar

Chopin T. (2015). Marine aquaculture in canada: well-established monocultures of finfish and shellfish and an emerging integrated multi-trophic aquaculture (IMTA) approach including seaweeds, other invertebrates, and microbial communities. Fisheries, 40: 28–31.Search in Google Scholar

Combe M., Reverter M., Caruso D., Pepey E., Gozlan R.E. (2023). Impact of global warming on the severity of viral diseases: A potentially alarming threat to sustainable aquaculture worldwide. Microorganisms, 11: 1049.Search in Google Scholar

Cooley S.R., Lucey N., Kite-Powell H., Doney S.C. (2011). Nutrition and income from mollusc today imply vulnerability to ocean acidification tomorrow. Fish Fish., 13: 182–215.Search in Google Scholar

Crespel A., Zambonino-Infante J., Mazurais D., Koumoundouros G., Fragkoulis S., Quazuguel P., Huelvan C., Madec L., Servili A., Claireaux G. (2017). The development of contemporary European sea bass larvae (Dicentrarchus labrax) is not affected by projected ocean acidification scenarios. Marine Biol., 164.Search in Google Scholar

Cunningham S.C., Smith A.M., Lamare M.D. (2015). The effects of elevated pCO2 on growth, shell production and metabolism of cultured juvenile abalone, Haliotris iris. Aquacult. Res., 47: 2375–2392.Search in Google Scholar

Cushman J., Bohnert H. (2000). Genomic approaches to plant stress tolerance. Curr. Opin. Plant. Biol., 3: 117–124.Search in Google Scholar

Dasgupta S., Huq M., Mustafa M.G., Sobhan M.I., Wheeler D. (2017). The impact of aquatic salinization on fish habitats and poor communities in a changing climate: evidence from Southwest Coastal Bangladesh. Ecol. Econ., 139: 128–139.Search in Google Scholar

Di Franco A., Calò A., Sdiri K., Cattano C., Milazzo M., Guidetti P. (2019). Ocean acidification affects somatic and otolith growth relationship in fish: evidence from an in situ study. Biol. Lett., 15.Search in Google Scholar

Do V.Q., Phung M.L., Truong D.T., Pham T.T.T., Dang V.T., Nguyen T.K. (2021). The impact of extreme events and climate change on agricultural and fishery enterprises in Central Vietnam. Sustainability, 13: 7121.Search in Google Scholar

Doney S.C., Fabry V.J., Feely R.A., Kleypas J.A. (2009). Ocean acidification: the other CO2 problem.. Annu. Rev. Mar. Sci., 1: 169–192.Search in Google Scholar

Duarte C.M., Wu J., Xiao X., Bruhn A., Krause-Jensen D. (2017). Can seaweed farming play a role in climate change mitigation and adaptation? Front. Mar. Sci., 4: 100.Search in Google Scholar

Dubey S.K., Trivedi R.K., Chand B.K., Mandal B., Rout S.K. (2017). Farmers’ perceptions of climate change, impacts on freshwater aquaculture and adaptation strategies in climatic change hotspots: A case of the Indian Sundarban delta. Environ. Dev., 21: 38–51.Search in Google Scholar

Ekstrom J.A., Suatoni L., Cooley S.R., Pendleton L.H., Waldbusser G.G., Cinner J.E., Ritter J., Langdon C., van Hooidonk R., Gled-hill D., Wellman K., Beck M.W., Brander L.M., Rittschof D., Doherty C., Edwards P.E.T., Portela R. (2015). Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change, 5: 207–214.Search in Google Scholar

FAO (2014). The State of World Fisheries and Aquaculture 2014. Rome, 223 pp.Search in Google Scholar

FAO (2018). The State of World Fisheries and Aquaculture 2018: Meeting the Sustainable Development Goals.Search in Google Scholar

FAO (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome.Search in Google Scholar

FAO (2022 a). Report of the Global Conference on Aquaculture Millennium +20 – Aquaculture for Food and Sustainable Development. Shanghai, China, 22–25 September 2021. FAO Fisheries and Aquaculture Report. Rome, 1376.Search in Google Scholar

FAO (2022 b). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO.Search in Google Scholar

Fernandes J.F., Ricardo F., Jerónimo D., Santos A., Domingues M.R., Calado R., Madeira D. (2021). Modulation of fatty acid profiles by global and local ocean change drivers in the ragworm Hediste diversicolor: Implications for aquaculture production. Aquaculture, 542: 736871.Search in Google Scholar

Fitzer S.C., Chung P., Maccherozzi F., Dhesi S.S., Kamenos N.A., Phoenix V.R., Cusack M. (2016). Biomineral shell formation under ocean acidification: a shift from order to chaos. Sci. Rep., 6: 21076.Search in Google Scholar

Fitzer S.C., McGill R.A.R., Torres Gabarda S., Hughes B., Dove M., O’Connor W., Byrne M. (2019). Selectively bred oysters can alter their biomineralization pathways, promoting resilience to environmental acidification. Glob. Chang. Biol., 25: 4105–4115.Search in Google Scholar

Frederikse T., Landerer F., Caron L., Adhikari S., Parkes D., Humphrey V.W., Dangendorf S., Hogarth P., Zanna L., Cheng L., Wu Y. (2020). The causes of sea-level rise since 1900. Nature, 584: 393–397.Search in Google Scholar

Froehlich H., Gentry R., Halpern B. (2018). Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol., 2: 1745–1750.Search in Google Scholar

Fujii M., Takao S., Yamaka T., Akamatsu T., Fujita Y., Wakita M., Yamamoto A., Ono T. (2021). Continuous monitoring and future projection of ocean warming, acidification, and deoxygenation on the subarctic coast of Hokkaido, Japan. Front. Marine Sci., 8: 590020.Search in Google Scholar

Fujita R., Augyte S., Bender J., Brittingham P., Buschmann A.H., Chakfin M., Collins J., Davis K.A., Gallagher J.B., Gentry R., Gruby R.L., Kleiner K., Moritsch M., Price N., Roberson L., Taylor J., Yarish C. (2023). Seaweed blue carbon: Ready? Or Not?. Mar Policy, 155: 105747.Search in Google Scholar

Gamperl A., Ajiboye O., Zanuzzo F., Sandrelli R., Peroni E., Beemelmanns A. (2020). The impacts of increasing temperature and moderate hypoxia on the production characteristics, cardiac morphology and haematology of Atlantic salmon (Salmo salar). Aquaculture, 519: 734874.Search in Google Scholar

García Molinos J., Halpern B., Schoeman D., Brown C.J., Kiessling W., Moore P.J., Pandolfi J.M., Poloczanska E.S., Richardson A.J., Burrows M.T. (2016). Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change, 6: 83–88.Search in Google Scholar

Garlock T., Asche F., Anderson J., Ceballos-Concha A., Love D.C., Osmundsen T.C., Pincinato R.B.M. (2022). Aquaculture: the missing contributor in the food security agenda. Glob. Food Sec., 32: 100620.Search in Google Scholar

Gazeau F., Quiblier C., Jansen J., Gattuso J., Middelburg J., Heip C. (2007). Impact of elevated CO2 on shellfish calcification. Geophys. Res. Lett., 34.Search in Google Scholar

Gentry R.R., Froehlich H.E., Grimm D., Kareiva P., Parke M., Rust M., Gaines S.D., Halpern B.S. (2017). Mapping the global potential for marine aquaculture. Nat. Ecol. Evol., 1: 1317–1324.Search in Google Scholar

Gilbert P.M., Maranger R., Sobota D.J., Bouwman L. (2014). The Haber Bosch–harmful algal bloom (HB-HAB) link. Environ. Res. Lett., 9: 1–13.Search in Google Scholar

Grantham B., Chan F., Nielsen K., Fox D., Barth J., Huyer A., Lubchenco J., Menge B. (2004). Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature, 429: 749–754.Search in Google Scholar

Handisyde N., Telfer T., Ross L. (2017). Vulnerability of aquaculture-related livelihoods to changing climate at the global scale. Fish Fish., 18: 466–488.Search in Google Scholar

Herbeck L.S., Unger D., Wu Y., Jennerjahn T.C. (2013). Effluent, nutrient and organic matter export from shrimp and fish ponds causing eutrophication in coastal and back-reef waters of NE Hainan, tropical China. Cont Shelf Res., 57: 92–104.Search in Google Scholar

Hou Z., Wen H., Li J., He F., Li Y., Qi X. (2019). Environmental hypoxia causes growth retardation, osteoclast differentiation and calcium dyshomeostasis in juvenile rainbow trout (Oncorhynchus mykiss). Sci. Total Environ., 705: 135272.Search in Google Scholar

IPCC (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Pörtner H.-O., Roberts D.C., Tignor M., Poloczanska E.S., Minten-beck K., Alegría A., Craig M., Langsdorf S., Löschke S., Möller V., Okem A., Rama B. (eds). Cambridge University Press, Cambridge, UK and New York, USA, 3056 pp.Search in Google Scholar

Islam M.J., Kunzmann A., Thiele R., Slater M.J. (2020). Effects of extreme ambient temperature in European seabass, Dicentrarchus labrax acclimated at different salinities: Growth performance, metabolic and molecular stress responses. Sci. Total Environ., 735: 139371.Search in Google Scholar

Jones A., Mead A., Kaiser M., Austen M., Adrian A., Auchterlonie N., Black K., Blow L., Bury C., Brown J., Burnell G., Connolly E., Dingwall A., Derrick S., Eno N., Gautier D., Green K., Gubbins M., Hart P., Holmyard J., Immink A., Jarrad D., Katoh E., Langley J., Lee D., Vay L., Leftwich C., Mitchell M., Moore A., Murray A., Mclaren E., Norbury H., Parker D., Parry S., Purchase D., Rahman A., Sanver F., Siggs M., Simpson S., Slaski R., Smith K., Syvret M., Tibbott C., Thomas P., Turnbull J., Whiteley R., Whittles M., Wilcockson M., Wilson J., Dicks L., Sutherland W. (2015). Prioritization of knowledge needs for sustainable aquaculture: a national and global perspective. Fish Fish., 16: 668–683. Jones A.R., Alleway H.K., McAfee D., Reis-Santos P., Theuerkauf S.J., Jones R.C. (2022). Climate-friendly seafood: the potential for emissions reduction and carbon capture in marine aquaculture. BioScience, 72: 123–143.Search in Google Scholar

Kalele D., Ogara W., Oludhe C., Onono J. (2021). Climate change impacts and relevance of smallholder farmers’ response in arid and semi-arid lands in Kenya. Sci. African, 12: e00814.Search in Google Scholar

Kelly J. (2001). Chapter 10 – Nitrogen effects on coastal marine ecosystems. Nitrogen Environ., https://doi.org/10.1016/B978-0-12-374347-3.00010-X, pp. 271–332.Search in Google Scholar

Kole C., Muthamilarasan M., Henry R., Edwards D., Sharma R., Abberton M., Batley J., Bentley A., Blakeney M., Bryant J., Cai H., Çakır M., Cseke L., Cockram J., Oliveira A., Pace C., Dempewolf H., Ellison S., Gepts P., Greenland A., Hall A., Hori K., Hughes S., Humphreys M., Iorizzo M., Ismail A., Marshall A., Mayes S., Nguyen H., Ogbonnaya F., Ortiz R., Paterson A., Simon P., Tohme J., Tuberosa R., Valliyodan B., Varshney R., Wullschleger S., Yano M., Prasad M. (2015). Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front. Plant. Sci., 6.Search in Google Scholar

Kroeker K.J., Kordas R.L., Crim R., Hendriks I.E., Ramajo L., Singh G.S., Duarte C.M., Gattuso J.-P. (2013). Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol., 19: 1884–1896.Search in Google Scholar

Lauvset S.K., Gruber N., Landschützer P., Olsen A., Tjiputra J. (2015). Trends and drivers in global surface ocean pH over the past 3 decades. Biogeosciences, 12: 1285–1298.Search in Google Scholar

Lee T.H., McGill R.A.R., Fitzer S. (2021). Effects of extra feeding combined with ocean acidification and increased temperature on the carbon isotope values (δ13C) in the mussel shell. J. Exp. Mar. Biol. Ecol., 541: 151562.Search in Google Scholar

Lemasson A.J., Hall-Spencer J.M., Kuri V., Knights A.M. (2019). Changes in biochemical and nutrient composition of seafood due to ocean acidification and warming. Marine Environ. Res., 143: 82–92.Search in Google Scholar

Leung J., Zhang S., Connell S. (2022). Is ocean acidification really a threat to marine calcifiers? A systematic review and meta-analysis of 980+ studies spanning two decades.. Small, e2107407.Search in Google Scholar

Li S., Yang Z., Nadolnyak D., Zhang Y., Luo Y. (2016). Economic impacts of climate change: profitability of freshwater aquaculture in China. Aquaculture, 47: 1537–1548.Search in Google Scholar

Little D., Bunting S. (2016). Aquaculture technologies for food security. In: Emerging technologies for promoting food security. Woodhead Publishing, pp. 93–113.Search in Google Scholar

Liu Y., Liu J., Ye S., Bureau D., Liu H., Yin J., Mou Z., Lin H., Hao F. (2019). Global metabolic responses of the lenok (Brachymystax lenok) to thermal stress. Comparative biochemistry and physiology. Part D, Genom. Proteom., 29: 308–319.Search in Google Scholar

Lowe A.T., Bos J. Ruesink J. (2019). Ecosystem metabolism drives pH variability and modulates long-term ocean acidification in the Northeast Pacific coastal ocean. Sci. Rep., 9: 963.Search in Google Scholar

Ma C., Zhu X., Liao M., Dong S., Dong Y. (2021). Heat sensitivity of mariculture species in China. ICES J. Marine Sci., 78: 2922–2930.Search in Google Scholar

Ma R., Abid N., Yang S., Ahmad F. (2023). From crisis to resilience: strengthening climate action in OECD countries through environmental policy and energy transition. Environ. Sci. Pollut. Res. Int., 30: 115480–115495.Search in Google Scholar

Mahmoud M., Kassab M., Zaineldin A., Amer A., Gewaily M., Darwish S., Dawood M. (2023). Mitigation of heat stress in striped catfish (Pangasianodon hypophthalmus) by dietary allicin: exploring the growth performance, stress biomarkers, antioxidative, and immune responses. Aquacult. Res., https://doi.org/10.1155/2023/8292007Search in Google Scholar

Matvienko N., Levchenko A., Danchuk O., Kvach Y. (2020). Assessment of the occurrence of microorganisms and other fish parasites in the freshwater aquaculture of Ukraine in relation to the ambient temperature. Acta Ichthyol. Piscat., 50: 333–348.Search in Google Scholar

Maulu S., Hasimuna O., Haambiya L., Monde C., Musuka C., Makorwa T., Munganga B., Phiri K., Nsekanabo J. (2021). Climate change effects on aquaculture production: Sustainability implications, mitigation, and adaptations. Front. Sustain. Food Syst., 5: 609097.Search in Google Scholar

Melzner F., Stange P., Trübenbach K., Thomsen J., Casties I., Panknin U., Gorb S.N., Gutowska M.A. (2011). Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS One, 6: e24223.Search in Google Scholar

Miranda R., Garcia-Carpintero E. (2018). Overcitation and overrepresentation of review papers in the most cited papers. J. Informetr., 12: 1015–1030.Search in Google Scholar

Mitchell A., Hayes C., Booth D.J., Nagelkerken I. (2023). Future shock: Ocean acidification and seasonal water temperatures alter the physiology of competing temperate and coral reef fishes. Sci. Total Environ., 883.Search in Google Scholar

Morshed M., Islam M., Lohano H., Shyamsundar P. (2020). Production externalities of shrimp aquaculture on paddy farming in coastal Bangladesh. Agric. Water Manag., 238: 106213.Search in Google Scholar

Moss A.S., Brooker A.J., Ozioko S.N., Nederlof M.A.J., Debnath S., Schrama J. (2024). Effects of feed processing type, protein source, and environmental salinity on Litopenaeus vannamei feeding behaviour. bioRxiv, https://doi.org/10.1101/2024.03.14.584959Search in Google Scholar

Muhala V., Chicombo T., Macate I., Guimarães-Costa A., Gundana H., Malichocho C., Hasimuna O., Remédio A., Maulu S., Cuamba L., Bessa-Silva A., Sampaio I. (2021). Climate change in fisheries and aquaculture: analysis of the impact caused by Idai and Kenneth cyclones in Mozambique. Front. Sustain. Food Syst., 5: 714187.Search in Google Scholar

Muralidhar M., Kumaran M., Jayanthi M., Dayal J., Kumar J., Saraswathy R., Nagavel A. (2021). Impacts of climate change and adaptations in shrimp aquaculture: A study in coastal Andhra Pradesh, India. AEHMS, 24: 28–38.Search in Google Scholar

Nang T., Lebailly P. (2017). On sustainable aquaculture. Open Access J., https://doi.org/10.19080/OFOAJ.2017.01.555563Search in Google Scholar

Nardi A., Mincarelli L., Benedetti M., Fattorini D., d’Errico G., Regoli F. (2017). Indirect effects of climate changes on cadmium bioavail-ability and biological effects in the Mediterranean mussel Mytilus galloprovincialis. Chemosphere, 169: 493–502.Search in Google Scholar

Nardi A., Benedetti M., Fattorini D., Regoli F. (2018). Oxidative and interactive challenge of cadmium and ocean acidification on the smooth scallop Flexopecten glaber. Aquat. Toxicol., 196: 53–60.Search in Google Scholar

Narita D., Rehdanz K., Tol R. (2012). Economic costs of ocean acidification: a look into the impacts on global shellfish production. Clim. Change, 113: 1049–1063.Search in Google Scholar

Naylor R.L., Hardy R.W., Buschmann A.H., Bush S.R., Cao L., Klinger D.H., Little D.C., Lubchenco J., Shumway S.E., Troell M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591: 551–563.Search in Google Scholar

Nguyen T., Tran T., Ahsan D. (2022). Aquaculture farmers’ economic risks due to climate change: evidence from Vietnam. Europ. J. Business Sci. Technol., 8.Search in Google Scholar

Nicholls R. (2011). Planning for the impacts of sea level rise. Oceanography, 24: 144–157.Search in Google Scholar

Noor M.I.M., Azra M.N., Lim V.-C., Zaini A.A., Dali F., Hashim I.M., Hamzah H.C., Abdullah M.F. (2021). Aquaculture research in Southeast Asia – a scientometric analysis (1990–2019). Int. Aquat. Res., 13: 271–288.Search in Google Scholar

O’Neill E., Rowan N. (2021). Microalgae as a natural ecological bioindicator for the simple real-time monitoring of aquaculture waste-water quality including provision for assessing impact of extremes in climate variance – A comparative case study from the Republic of Ireland. Sci. Total Environ., 802: 149800.Search in Google Scholar

Oyinlola M., Reygondeau G., Wabnitz C., Cheung W. (2020). Projecting global mariculture diversity under climate change. Glob. Change Biol., 26: 2134–2148.Search in Google Scholar

Pathirana E., Whittington R.J., Hick P.M. (2022). Impact of seawater temperature on the Pacific oyster (Crassostrea gigas) microbiome and susceptibility to disease associated with Ostreid herpesvirus-1 (OsHV-1). Anim. Prod. Sci., 62: 1040–1054.Search in Google Scholar

Pelletier N., Tyedmers P. (2007). Feeding farmed salmon: Is organic better? Aquaculture, 272: 399–416.Search in Google Scholar

Poloczanska E., Tsikliras A., Weatherdon L., Magnan A., Rogers A., Sumaila U., Cheung W. (2016). Observed and projected impacts of climate change on marine fisheries, aquaculture, coastal tourism, and human health: An update. Front. Marine Sci., 3.Search in Google Scholar

Rahman M.L., Shahjahan M., Ahmed N. (2021). Tilapia farming in Bangladesh: Adaptation to climate change. Sustainability, 13: 7657.Search in Google Scholar

Ramajo L., Fernández C., Núñez Y., Caballero P., Lardies M., Poupin M. (2019). Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling. ICES J. Mar. Sci., 76: 1836–1849.Search in Google Scholar

Reid G., Gurney-Smith H., Marcogliese D., Knowler D., Benfey T., Garber A., Forster I., Chopin,T., Brewer-Dalton K., Moccia R., Flaherty M., Smith C., Silva S. (2019). Climate change and aqua-culture: considering biological response and resources. Aquacult. Environ. Interac., 11: 569–602.Search in Google Scholar

Richards D.R., Friess D.A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. National Academy of Sciences of the United States of America. 12;113: 344–349.Search in Google Scholar

Rocha C., Cabral H., Marques J., Gonçalves A. (2022). A global overview of aquaculture food production with a focus on the activity’s development in transitional systems – the case study of a south European country (Portugal). J. Marine Sci. Eng., 10.Search in Google Scholar

Rud Y., Zaloilo O., Buchatsky L., Hrytsyniak I. (2020). The impact of climate change on fish infectious diseases (a review). Ribogospodarsʹka nauka Ukraïni, https://doi.org/10.15407/fsu2020.04.078Search in Google Scholar

Sae-Lim P., Kause A., Mulder H., Olesen I. (2017). Breeding and Genetics Symposium: Climate change and selective breeding in aquaculture. J. Anim. Sci., 95: 1801–1812.Search in Google Scholar

Sampaio E., Lopes A., Francisco S., Paula J., Pimentel M., Maulvault A., Repolho T., Grilo T., Pousão-Ferreira P., Marques A., Rosa R. (2018). Ocean acidification dampens physiological stress response to warming and contamination in a commercially-important fish (Argyrosomus regius). Sci. Total Environ., 618: 388–398.Search in Google Scholar

Samuel-Fitwi B., Meyer S., Reckmann K., Schroeder J.P., Schulz C. (2013). Aspiring for environmentally conscious aquafeed: comparative LCA of aquafeed manufacturing using different protein sources. J. Cleaner Prod., 52: 225–233.Search in Google Scholar

Scambos T., Abdalati W. (2022). How fast is sea level rising? Arctic Antarctic Alpine Res., 54: 123–124.Search in Google Scholar

Scanes E., Scanes P.R. Ross P.M. (2020). Climate change rapidly warms and acidifies Australian estuaries. Nat. Commun., 11: 1803.Search in Google Scholar

Scavia D., Justić D., Obenour D., Craig K., Wang L. (2019). Hypoxic volume is more responsive than hypoxic area to nutrient load reductions in the northern Gulf of Mexico – and it matters to fish and fisheries. Environ. Res. Lett., 14.Search in Google Scholar

Schäfer N., Matoušek J., Rebl A., Stejskal V., Brunner R.M., Goldammer T., Verleih M., Korytář T. (2021). Effects of chronic hypoxia on the immune status of pikeperch (Sander lucioperca Linnaeus, 1758). Biology, 10: 649.Search in Google Scholar

Servili A., Lévêque E., Mouchel O., Devergne J., Lebigre C., Roussel S., Mazurais D., Zambonino-Infante J. (2022). Ocean acidification alters the acute stress response of a marine fish. Sci. Total Environ., 858: 159804.Search in Google Scholar

Shi K., Li J., Lv J., Liu P., Li J., Li S. (2020). Full-length transcriptome sequences of ridgetail white prawn Exopalaemon carinicauda provide insight into gene expression dynamics during thermal stress. Sci. Total Environ., 747: 141238.Search in Google Scholar

Soliman N. (2023). Risk assessment and vulnerability of aquaculture activities in the Nile Delta to climate change impacts and its implications on food security. Mediterr. Aquacult. J., 10: 40–53.Search in Google Scholar

Stavrakidis-Zachou O., Lika K., Anastasiadis P., Papandroulakis N. (2021). Projecting climate change impacts on Mediterranean fin-fish production: a case study in Greece. Clim. Change, 165.Search in Google Scholar

Tegomo F., Zhong Z., Njomoue A., Okon S., Ullah S., Gray N., Chen K., Sun Y., Xiao J., Wang L., Ye Y., Huang H., Shao Q. (2021). Experimental studies on the impact of the projected ocean acidification on fish survival, health, growth, and meat quality; black sea bream (Acanthopagrus schlegelii), physiological and histological studies. Animals (Basel), 11: 3119.Search in Google Scholar

Thirunavukkarasu A., Kailasam M., Sundaray J., Biswas G., Kumar P., Subburaj R., Thiagarajan G. (2015). Controlled breeding, seed production and culture of brackishwater fishes. In: Advances in Marine Brackishwater Aquaculture, Perumal S., Thirunavukkarasu A.R., Pachiappan P. (eds). Springer, pp. 75–87.Search in Google Scholar

Troell M., Naylor R.L., Metian M., Beveridge M., Tyedmers P.H., Folke C., Arrow K.J., Barrett S., Crépin A.S., Ehrlich P.R., Gren A., Kautsky N., Levin S.A., Nyborg K., Österblom H., Polasky S., Scheffer M., Walker B.H., Xepapadeas T., de Zeeuw A. (2014). Does aquaculture add resilience to the global food system? Proceedings of the National Academy of Sciences of the United States of America. 16, 111: 13257–13263.Search in Google Scholar

Turchini G., Nie P. (2020). The climate is still changing. Rev. Aqua-cult., https://doi.org/10.1111/raq.12517Search in Google Scholar

Valenti W., Barros H., Moraes-Valenti P., Bueno G., Cavalli R. (2021). Aquaculture in Brazil: past, present and future. Aquacult. Rep., 19: 100611.Search in Google Scholar

Wade N.M., Clark T.D., Maynard B.T., Atherton S., Wilkinson R.J., Smullen R.P., Taylor R.S. (2019). Effects of an unprecedented summer heatwave on the growth performance, flesh colour and plasma biochemistry of marine cage-farmed Atlantic salmon (Salmo salar). J. Therm. Biol., 80: 64–74.Search in Google Scholar

Wang L., Sun F., Wen Y., Yue G. (2021). Effects of ocean acidification on transcriptomes in Asian seabass juveniles. Marine Biotechnol., 23: 445–455.Search in Google Scholar

Wheeler R., Lobley M. (2021). Managing extreme weather and climate change in UK agriculture: Impacts, attitudes and action among farmers and stakeholders. Clim. Risk Manage., 32: 100313.Search in Google Scholar

Whitefield C., Braby C., Barth J. (2021). Capacity building to address ocean change: organizing across communities of place, practice and governance to achieve ocean acidification and hypoxia resilience in Oregon. Coastal Manage., 49: 532–546.Search in Google Scholar

Wijsman J., Troost K., Fang J., Roncarati A. (2018). Global production of marine bivalves. Trends and challenges. In: Goods and services of marine bivalves, Smaal A.C., Ferreira J.G., Grant J., Petersen J.K., Strand Ø. (eds). Springer Open.Search in Google Scholar

Willer D., Aldridge D. (2017). Microencapsulated diets to improve bivalve shellfish aquaculture. Royal Soc. Open Sci., 4.Search in Google Scholar

Yang P., He Q., Huang J., Tong C. (2015). Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeastern China. Atmos. Environ., 115: 269–277.Search in Google Scholar

Yang P., Zhang Y., Yang H., Zhang Y., Xu J., Tan L., Tong C., Lai D.Y.F. (2019). Large fine-scale spatiotemporal variations of CH4 diffusive fluxes from shrimp aquaculture ponds affected by organic matter supply and aeration in Southeast China. J. Geophys. Res. Biogeosci., 124: 1290–1307.Search in Google Scholar

Yu L. (2019). Assessing the economic impacts of ocean acidification on Asia’s mollusk mariculture. KMI Int. J. Marit. Aff. Fish., 11: 17–30.Search in Google Scholar

Yu L., Gan J. (2021). Mitigation of eutrophication and hypoxia through oyster aquaculture: an ecosystem model evaluation off the Pearl River Estuary. Environ. Sci. Technol., 55: 5506–5514.Search in Google Scholar

Yuan J., Xiang J., Liu D., Kang H., He T., Kim S., Lin Y., Freeman C., Ding W. (2019). Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture. Nat. Clim. Change, 9: 318–322.Search in Google Scholar

Zhao X., Han Y., Chen B., Xia B., Qu K., Liu G. (2019). CO2-driven ocean acidification weakens mussel shell defense capacity and induces global molecular compensatory responses. Chemosphere, 243: 125415.Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Ciencias de la vida, Biotecnología, Zoología, Medicina, Medicina veterinaria