[Adamo S., Lovett M. (2011). Some like it hot: the effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. J. Exp Biol., 214: 1997–2004.]Search in Google Scholar
[Ahmed N., Diana J. (2015 a). Threatening “white gold”: Impacts of climate change on shrimp farming in coastal Bangladesh. Ocean Coast Manag., 114: 45–52.]Search in Google Scholar
[Ahmed N., Diana J.S. (2015 b). Coastal to inland: expansion of prawn farming for adaptation to climate change in Bangladesh. Aquac. Rep., 2: 67–76.]Search in Google Scholar
[Ahmed N., Diana J. (2016). Does climate change matter for freshwater aquaculture in Bangladesh? Reg. Environ. Change., 16: 1659–1669.]Search in Google Scholar
[Ahmed N., Turchini G. (2021). Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. J. Clean. Prod., 297: 126604.]Search in Google Scholar
[Alfaro A., Jeffs A., King N. (2014). Enabling and driving aquaculture growth in New Zealand through innovation. New Zeal. J. Marine Freshwater Res., 48: 311–313.]Search in Google Scholar
[Alleway H., Jones A., Theuerkauf S., Jones R. (2022). A global and regional view of the opportunity for climate-smart mariculture. Phil. Trans. R. Soc. B: Biol. Sci., 377: 20210128.]Search in Google Scholar
[Allison E.H., Perry A.L., Badjeck M.-C., Neil Adger W., Brown K., Conway D., Halls A.S., Pilling G.M., Reynolds J.D., Andrew N.L., Dulvy N.K. (2009). Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish., 10: 173–196.]Search in Google Scholar
[Anderson J., Asche F., Garlock T., Chu J. (2017). Aquaculture: its role in the future of food. World Agricultural Resources and Food Security (Frontiers of Economics and Globalization 17), Emerald Publishing Limited, pp. 159–173.]Search in Google Scholar
[Angel D., Jokumsen A., Lembo G. (2019). Aquaculture production systems and environmental interactions. Organic Aquaculture. https://doi.org/10.1007/978-3-030-05603-2_6.]Search in Google Scholar
[Asiedu B., Malcolm D., Iddrisu S. (2018). Assessing the economic impact of climate change in the small-scale aquaculture industry of Ghana, West Africa. AAS Open Res, 1: 26.]Search in Google Scholar
[Aubin J., Baruthio A., Mungkung R., Lazard J. (2015). Environmental performance of brackish water polyculture system from a life cycle perspective: a Filipino case study. Aquaculture, 435: 217–227.]Search in Google Scholar
[Ayer N.W., Tyedmers P.H. (2009). Assessing alternative aquaculture technologies: life cycle assessment of salmonid culture systems in Canada. J. Clean. Prod., 17: 362–373.]Search in Google Scholar
[Azra M.N., Noor M.I.M., Eales J., Sung Y.Y., Ghaffar M.A. (2022). What evidence exists for the impact of climate change on the physiology and behaviour of important aquaculture marine crustacean species in Asia? A systematic map protocol. Environ. Evid., 11: 9.]Search in Google Scholar
[Bakun A., Black B., Bograd S., García-Reyes M., Miller A., Rykaczewski R., Sydeman W. (2015). Anticipated effects of climate change on coastal upwelling ecosystems. Curr. Clim. Change Rep., 1: 85–93.]Search in Google Scholar
[Barange M., Bahri T., Beveridge M.C.M., Cochrane K.L., Funge-Smith S., Poulain F. (2018). Editors. Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture Technical Paper No. 627. Rome, FAO. 628.]Search in Google Scholar
[Barton A., Hales B., Waldbusser G.G., Langdon C., Feely R.A. (2012). The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnol. Oceanogr., 57: 698–710.]Search in Google Scholar
[Barton A., Waldbusser G.G., Feely R.A., Weisberg S.B., Newton J.A., Hales B., Cudd S., Eudeline B., Langdon C.J., Jefferds I., King T., Suhrbier A., McLaughlin K. (2015). Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography, 28: 146–159.]Search in Google Scholar
[Beemelmanns A., Zanuzzo F.S., Sandrelli R.M., Rise M.L., Gamperl A.K. (2021). The Atlantic salmon’s stress- and immune-related transcriptional responses to moderate hypoxia, an incremental temperature increase, and these challenges combined. G3: Genes, Genomes, Genet., 11: jkab102.]Search in Google Scholar
[Béné C., Barange M., Subasinghe R., Pinstrup-Andersen P., Merino G., Hemre G.-I., Williams M. (2015). Feeding 9 billion by 2050 – Putting fish back on the menu. Food Secur., 7: 261–274.]Search in Google Scholar
[Béné C., Arthur R., Norbury H., Allison E.H., Beveridge M., Bush S., Campling L., Leschen W., Little D., Squires D., Thilsted S.H., Troell M., Williams M. (2016). Contribution of fisheries and aqua-culture to food security and poverty reduction: Assessing the current evidence. World Dev., 79: 177–196.]Search in Google Scholar
[Bennett M., March A., Failler P. (2023). Blue farming potentials: Sustainable ocean farming strategies in the light of climate change adaptation and mitigation. Green Low-Carbon Economy, https://doi.org/10.47852/bonviewglce3202978]Search in Google Scholar
[Bergman K., Henriksson P.J., Hornborg S., Troell M., Borthwick L., Jonell M., Philis G., Ziegler F. (2020). Recirculating aquaculture is possible without major energy tradeoff: life cycle assessment of warmwater fish farming in Sweden. Environ. Sci. Technol., 54: 16062–16070.]Search in Google Scholar
[Boëchat I.G., Krüger A., Soares E.M., Figueredo C.C., Contin A.M., Pinheiro P.L., Abrantes G.H.P., Cardozo F.S., Gücker B. (2021). Fatty acids reveal aquaculture and drought effects on a large tropical reservoir. Sci. Total Environ., 755: 142660.]Search in Google Scholar
[Bostock J., Lane A., Hough C., Yamamoto K. (2016). An assessment of the economic contribution of EU aquaculture production and the influence of policies for its sustainable development. Aqua-cult. Int., 24: 699–733.]Search in Google Scholar
[Breitburg D, Levin L.A., Oschlies A., Grégoire M., Chavez F.P., Conley D.J., Garçon V., Gilbert D., Gutiérrez D., Isensee K., Jacinto G.S., Limburg K.E., Montes I., Naqvi S.W.A., Pitcher G.C., Rabalais N.N., Roman M.R., Rose K.A., Seibel B.A., Telszewski M., Yasuhara M., Zhang J. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359.]Search in Google Scholar
[Buck C., Wilkerson F., Parker A., Dugdale R. (2014). The influence of coastal nutrients on phytoplankton productivity in a shallow low inflow estuary, Drakes Estero, California (USA). Estuar. Coasts, 37: 847–863.]Search in Google Scholar
[Byrne M., Fitzer S. (2019) The impact of environmental acidification on the microstructure and mechanical integrity of marine invertebrate skeletons. Conserv. Physiol., 7.]Search in Google Scholar
[Cao L., Naylor R., Henriksson P., Leadbitter D., Metian M., Troell M., Zhang W. (2015). China’s aquaculture and the world’s wild fisheries. Science, 347: 133–135.]Search in Google Scholar
[Cao L., Halpern B.S., Troell M., Short R., Zeng C., Jiang Z., Liu Y., Zou C., Liu C., Liu S., Liu C., Chueng W.W.L. Cottrell R.S., DeClerk F., Gelcich S., Gephart J.A., Godo-Solo D., Kauli J.I., Micheli F., Naylor R.L., Payne H.J., Selig E.R., Sumaila U.R., Tigchelaar M. (2023). Vulnerability of blue foods to human-induced environmental change. Nat. Sustain., 6: 1186–1198.]Search in Google Scholar
[Carroll S., Coyne V. (2021). A proteomic analysis of the effect of ocean acidification on the haemocyte proteome of the South African abalone Haliotis midae. Fish Shellfish Immunol., https://doi.org/10.1016/j.fsi.2021.08.008]Search in Google Scholar
[Cascarano M.C., Stavrakidis-Zachou O., Mladineo I., Thompson K.D., Papandroulakis N., Katharios P. (2021). Mediterranean aquaculture in a changing climate: Temperature effects on pathogens and diseases of three farmed fish species. Pathogens, 10: 1205.]Search in Google Scholar
[Casimiro A.C.R., Garcia D.A.Z., Vidotto-Magnoni A.P.., Britton J.R., Agostinho A.A., de Almeida F.S., Orsi M.l. (2018). Escapes of non-native fish from flooded aquaculture facilities: the case of Paranapanema River, southern Brazil. Zoologia, 35: 1–6.]Search in Google Scholar
[Chan F., Barth J., Kroeker K., Lubchenco J., Menge B. (2019). The dynamics and impact of ocean acidification and hypoxia. Oceanography, 32: 62–71.]Search in Google Scholar
[Chan H.L., Cai J., Leung P.S. (2024). Aquaculture production and diversification: What causes what? Aquaculture, 583: 740626.]Search in Google Scholar
[Chand B.K, Trivedi R.K., Biswas A., Dubey S.K., Beg M.M. (2012 a). Study on impact of saline water inundation on freshwater aquaculture in Sundarban using risk analysis tools.. Explor. Anim. Med. Res., 2: 170–178.]Search in Google Scholar
[Chand B.K., Trivedi R.K., Dubey S.K., Beg M.M. (2012 b). Aquaculture in changing climate of Sundarban: Survey report on climate change vulnerabilities, aquaculture practices coping measures in Sagar and Basanti blocks of Indian Sundarban. West Bengal University of Animal Fishery Sciences.]Search in Google Scholar
[Chen C. (2017) Science mapping: A systematic review of the literature. J. Data Inform. Sci., 2: 1–40.]Search in Google Scholar
[Chen C. (2022). How to Use CiteSpace (6.1.R6), Lean Publishing, Victoria, Canada, http://leanpub.com/howtousecitespace.]Search in Google Scholar
[Chen J., Mueller V. (2018). Coastal climate change, soil salinity and human migration in Bangladesh. Nat. Clim. Change, 8: 981–985.]Search in Google Scholar
[Chen C., Song M. (2019). Visualizing a field of research: A methodology of systematic scientometric reviews. PLoS One, 14: e0223994.]Search in Google Scholar
[Chen Y., Liu E., Li C., Pan C., Zhao X., Wang Y., Ling Q. (2020). Effects of heat stress on histopathology, antioxidant enzymes, and transcriptomic profiles in gills of pikeperch Sander lucioperca. Aquaculture, 736277.]Search in Google Scholar
[Chopin T. (2015). Marine aquaculture in canada: well-established monocultures of finfish and shellfish and an emerging integrated multi-trophic aquaculture (IMTA) approach including seaweeds, other invertebrates, and microbial communities. Fisheries, 40: 28–31.]Search in Google Scholar
[Combe M., Reverter M., Caruso D., Pepey E., Gozlan R.E. (2023). Impact of global warming on the severity of viral diseases: A potentially alarming threat to sustainable aquaculture worldwide. Microorganisms, 11: 1049.]Search in Google Scholar
[Cooley S.R., Lucey N., Kite-Powell H., Doney S.C. (2011). Nutrition and income from mollusc today imply vulnerability to ocean acidification tomorrow. Fish Fish., 13: 182–215.]Search in Google Scholar
[Crespel A., Zambonino-Infante J., Mazurais D., Koumoundouros G., Fragkoulis S., Quazuguel P., Huelvan C., Madec L., Servili A., Claireaux G. (2017). The development of contemporary European sea bass larvae (Dicentrarchus labrax) is not affected by projected ocean acidification scenarios. Marine Biol., 164.]Search in Google Scholar
[Cunningham S.C., Smith A.M., Lamare M.D. (2015). The effects of elevated pCO2 on growth, shell production and metabolism of cultured juvenile abalone, Haliotris iris. Aquacult. Res., 47: 2375–2392.]Search in Google Scholar
[Cushman J., Bohnert H. (2000). Genomic approaches to plant stress tolerance. Curr. Opin. Plant. Biol., 3: 117–124.]Search in Google Scholar
[Dasgupta S., Huq M., Mustafa M.G., Sobhan M.I., Wheeler D. (2017). The impact of aquatic salinization on fish habitats and poor communities in a changing climate: evidence from Southwest Coastal Bangladesh. Ecol. Econ., 139: 128–139.]Search in Google Scholar
[Di Franco A., Calò A., Sdiri K., Cattano C., Milazzo M., Guidetti P. (2019). Ocean acidification affects somatic and otolith growth relationship in fish: evidence from an in situ study. Biol. Lett., 15.]Search in Google Scholar
[Do V.Q., Phung M.L., Truong D.T., Pham T.T.T., Dang V.T., Nguyen T.K. (2021). The impact of extreme events and climate change on agricultural and fishery enterprises in Central Vietnam. Sustainability, 13: 7121.]Search in Google Scholar
[Doney S.C., Fabry V.J., Feely R.A., Kleypas J.A. (2009). Ocean acidification: the other CO2 problem.. Annu. Rev. Mar. Sci., 1: 169–192.]Search in Google Scholar
[Duarte C.M., Wu J., Xiao X., Bruhn A., Krause-Jensen D. (2017). Can seaweed farming play a role in climate change mitigation and adaptation? Front. Mar. Sci., 4: 100.]Search in Google Scholar
[Dubey S.K., Trivedi R.K., Chand B.K., Mandal B., Rout S.K. (2017). Farmers’ perceptions of climate change, impacts on freshwater aquaculture and adaptation strategies in climatic change hotspots: A case of the Indian Sundarban delta. Environ. Dev., 21: 38–51.]Search in Google Scholar
[Ekstrom J.A., Suatoni L., Cooley S.R., Pendleton L.H., Waldbusser G.G., Cinner J.E., Ritter J., Langdon C., van Hooidonk R., Gled-hill D., Wellman K., Beck M.W., Brander L.M., Rittschof D., Doherty C., Edwards P.E.T., Portela R. (2015). Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change, 5: 207–214.]Search in Google Scholar
[FAO (2014). The State of World Fisheries and Aquaculture 2014. Rome, 223 pp.]Search in Google Scholar
[FAO (2018). The State of World Fisheries and Aquaculture 2018: Meeting the Sustainable Development Goals.]Search in Google Scholar
[FAO (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome.]Search in Google Scholar
[FAO (2022 a). Report of the Global Conference on Aquaculture Millennium +20 – Aquaculture for Food and Sustainable Development. Shanghai, China, 22–25 September 2021. FAO Fisheries and Aquaculture Report. Rome, 1376.]Search in Google Scholar
[FAO (2022 b). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO.]Search in Google Scholar
[Fernandes J.F., Ricardo F., Jerónimo D., Santos A., Domingues M.R., Calado R., Madeira D. (2021). Modulation of fatty acid profiles by global and local ocean change drivers in the ragworm Hediste diversicolor: Implications for aquaculture production. Aquaculture, 542: 736871.]Search in Google Scholar
[Fitzer S.C., Chung P., Maccherozzi F., Dhesi S.S., Kamenos N.A., Phoenix V.R., Cusack M. (2016). Biomineral shell formation under ocean acidification: a shift from order to chaos. Sci. Rep., 6: 21076.]Search in Google Scholar
[Fitzer S.C., McGill R.A.R., Torres Gabarda S., Hughes B., Dove M., O’Connor W., Byrne M. (2019). Selectively bred oysters can alter their biomineralization pathways, promoting resilience to environmental acidification. Glob. Chang. Biol., 25: 4105–4115.]Search in Google Scholar
[Frederikse T., Landerer F., Caron L., Adhikari S., Parkes D., Humphrey V.W., Dangendorf S., Hogarth P., Zanna L., Cheng L., Wu Y. (2020). The causes of sea-level rise since 1900. Nature, 584: 393–397.]Search in Google Scholar
[Froehlich H., Gentry R., Halpern B. (2018). Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol., 2: 1745–1750.]Search in Google Scholar
[Fujii M., Takao S., Yamaka T., Akamatsu T., Fujita Y., Wakita M., Yamamoto A., Ono T. (2021). Continuous monitoring and future projection of ocean warming, acidification, and deoxygenation on the subarctic coast of Hokkaido, Japan. Front. Marine Sci., 8: 590020.]Search in Google Scholar
[Fujita R., Augyte S., Bender J., Brittingham P., Buschmann A.H., Chakfin M., Collins J., Davis K.A., Gallagher J.B., Gentry R., Gruby R.L., Kleiner K., Moritsch M., Price N., Roberson L., Taylor J., Yarish C. (2023). Seaweed blue carbon: Ready? Or Not?. Mar Policy, 155: 105747.]Search in Google Scholar
[Gamperl A., Ajiboye O., Zanuzzo F., Sandrelli R., Peroni E., Beemelmanns A. (2020). The impacts of increasing temperature and moderate hypoxia on the production characteristics, cardiac morphology and haematology of Atlantic salmon (Salmo salar). Aquaculture, 519: 734874.]Search in Google Scholar
[García Molinos J., Halpern B., Schoeman D., Brown C.J., Kiessling W., Moore P.J., Pandolfi J.M., Poloczanska E.S., Richardson A.J., Burrows M.T. (2016). Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change, 6: 83–88.]Search in Google Scholar
[Garlock T., Asche F., Anderson J., Ceballos-Concha A., Love D.C., Osmundsen T.C., Pincinato R.B.M. (2022). Aquaculture: the missing contributor in the food security agenda. Glob. Food Sec., 32: 100620.]Search in Google Scholar
[Gazeau F., Quiblier C., Jansen J., Gattuso J., Middelburg J., Heip C. (2007). Impact of elevated CO2 on shellfish calcification. Geophys. Res. Lett., 34.]Search in Google Scholar
[Gentry R.R., Froehlich H.E., Grimm D., Kareiva P., Parke M., Rust M., Gaines S.D., Halpern B.S. (2017). Mapping the global potential for marine aquaculture. Nat. Ecol. Evol., 1: 1317–1324.]Search in Google Scholar
[Gilbert P.M., Maranger R., Sobota D.J., Bouwman L. (2014). The Haber Bosch–harmful algal bloom (HB-HAB) link. Environ. Res. Lett., 9: 1–13.]Search in Google Scholar
[Grantham B., Chan F., Nielsen K., Fox D., Barth J., Huyer A., Lubchenco J., Menge B. (2004). Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature, 429: 749–754.]Search in Google Scholar
[Handisyde N., Telfer T., Ross L. (2017). Vulnerability of aquaculture-related livelihoods to changing climate at the global scale. Fish Fish., 18: 466–488.]Search in Google Scholar
[Herbeck L.S., Unger D., Wu Y., Jennerjahn T.C. (2013). Effluent, nutrient and organic matter export from shrimp and fish ponds causing eutrophication in coastal and back-reef waters of NE Hainan, tropical China. Cont Shelf Res., 57: 92–104.]Search in Google Scholar
[Hou Z., Wen H., Li J., He F., Li Y., Qi X. (2019). Environmental hypoxia causes growth retardation, osteoclast differentiation and calcium dyshomeostasis in juvenile rainbow trout (Oncorhynchus mykiss). Sci. Total Environ., 705: 135272.]Search in Google Scholar
[IPCC (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Pörtner H.-O., Roberts D.C., Tignor M., Poloczanska E.S., Minten-beck K., Alegría A., Craig M., Langsdorf S., Löschke S., Möller V., Okem A., Rama B. (eds). Cambridge University Press, Cambridge, UK and New York, USA, 3056 pp.]Search in Google Scholar
[Islam M.J., Kunzmann A., Thiele R., Slater M.J. (2020). Effects of extreme ambient temperature in European seabass, Dicentrarchus labrax acclimated at different salinities: Growth performance, metabolic and molecular stress responses. Sci. Total Environ., 735: 139371.]Search in Google Scholar
[Jones A., Mead A., Kaiser M., Austen M., Adrian A., Auchterlonie N., Black K., Blow L., Bury C., Brown J., Burnell G., Connolly E., Dingwall A., Derrick S., Eno N., Gautier D., Green K., Gubbins M., Hart P., Holmyard J., Immink A., Jarrad D., Katoh E., Langley J., Lee D., Vay L., Leftwich C., Mitchell M., Moore A., Murray A., Mclaren E., Norbury H., Parker D., Parry S., Purchase D., Rahman A., Sanver F., Siggs M., Simpson S., Slaski R., Smith K., Syvret M., Tibbott C., Thomas P., Turnbull J., Whiteley R., Whittles M., Wilcockson M., Wilson J., Dicks L., Sutherland W. (2015). Prioritization of knowledge needs for sustainable aquaculture: a national and global perspective. Fish Fish., 16: 668–683. Jones A.R., Alleway H.K., McAfee D., Reis-Santos P., Theuerkauf S.J., Jones R.C. (2022). Climate-friendly seafood: the potential for emissions reduction and carbon capture in marine aquaculture. BioScience, 72: 123–143.]Search in Google Scholar
[Kalele D., Ogara W., Oludhe C., Onono J. (2021). Climate change impacts and relevance of smallholder farmers’ response in arid and semi-arid lands in Kenya. Sci. African, 12: e00814.]Search in Google Scholar
[Kelly J. (2001). Chapter 10 – Nitrogen effects on coastal marine ecosystems. Nitrogen Environ., https://doi.org/10.1016/B978-0-12-374347-3.00010-X, pp. 271–332.]Search in Google Scholar
[Kole C., Muthamilarasan M., Henry R., Edwards D., Sharma R., Abberton M., Batley J., Bentley A., Blakeney M., Bryant J., Cai H., Çakır M., Cseke L., Cockram J., Oliveira A., Pace C., Dempewolf H., Ellison S., Gepts P., Greenland A., Hall A., Hori K., Hughes S., Humphreys M., Iorizzo M., Ismail A., Marshall A., Mayes S., Nguyen H., Ogbonnaya F., Ortiz R., Paterson A., Simon P., Tohme J., Tuberosa R., Valliyodan B., Varshney R., Wullschleger S., Yano M., Prasad M. (2015). Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front. Plant. Sci., 6.]Search in Google Scholar
[Kroeker K.J., Kordas R.L., Crim R., Hendriks I.E., Ramajo L., Singh G.S., Duarte C.M., Gattuso J.-P. (2013). Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol., 19: 1884–1896.]Search in Google Scholar
[Lauvset S.K., Gruber N., Landschützer P., Olsen A., Tjiputra J. (2015). Trends and drivers in global surface ocean pH over the past 3 decades. Biogeosciences, 12: 1285–1298.]Search in Google Scholar
[Lee T.H., McGill R.A.R., Fitzer S. (2021). Effects of extra feeding combined with ocean acidification and increased temperature on the carbon isotope values (δ13C) in the mussel shell. J. Exp. Mar. Biol. Ecol., 541: 151562.]Search in Google Scholar
[Lemasson A.J., Hall-Spencer J.M., Kuri V., Knights A.M. (2019). Changes in biochemical and nutrient composition of seafood due to ocean acidification and warming. Marine Environ. Res., 143: 82–92.]Search in Google Scholar
[Leung J., Zhang S., Connell S. (2022). Is ocean acidification really a threat to marine calcifiers? A systematic review and meta-analysis of 980+ studies spanning two decades.. Small, e2107407.]Search in Google Scholar
[Li S., Yang Z., Nadolnyak D., Zhang Y., Luo Y. (2016). Economic impacts of climate change: profitability of freshwater aquaculture in China. Aquaculture, 47: 1537–1548.]Search in Google Scholar
[Little D., Bunting S. (2016). Aquaculture technologies for food security. In: Emerging technologies for promoting food security. Woodhead Publishing, pp. 93–113.]Search in Google Scholar
[Liu Y., Liu J., Ye S., Bureau D., Liu H., Yin J., Mou Z., Lin H., Hao F. (2019). Global metabolic responses of the lenok (Brachymystax lenok) to thermal stress. Comparative biochemistry and physiology. Part D, Genom. Proteom., 29: 308–319.]Search in Google Scholar
[Lowe A.T., Bos J. Ruesink J. (2019). Ecosystem metabolism drives pH variability and modulates long-term ocean acidification in the Northeast Pacific coastal ocean. Sci. Rep., 9: 963.]Search in Google Scholar
[Ma C., Zhu X., Liao M., Dong S., Dong Y. (2021). Heat sensitivity of mariculture species in China. ICES J. Marine Sci., 78: 2922–2930.]Search in Google Scholar
[Ma R., Abid N., Yang S., Ahmad F. (2023). From crisis to resilience: strengthening climate action in OECD countries through environmental policy and energy transition. Environ. Sci. Pollut. Res. Int., 30: 115480–115495.]Search in Google Scholar
[Mahmoud M., Kassab M., Zaineldin A., Amer A., Gewaily M., Darwish S., Dawood M. (2023). Mitigation of heat stress in striped catfish (Pangasianodon hypophthalmus) by dietary allicin: exploring the growth performance, stress biomarkers, antioxidative, and immune responses. Aquacult. Res., https://doi.org/10.1155/2023/8292007]Search in Google Scholar
[Matvienko N., Levchenko A., Danchuk O., Kvach Y. (2020). Assessment of the occurrence of microorganisms and other fish parasites in the freshwater aquaculture of Ukraine in relation to the ambient temperature. Acta Ichthyol. Piscat., 50: 333–348.]Search in Google Scholar
[Maulu S., Hasimuna O., Haambiya L., Monde C., Musuka C., Makorwa T., Munganga B., Phiri K., Nsekanabo J. (2021). Climate change effects on aquaculture production: Sustainability implications, mitigation, and adaptations. Front. Sustain. Food Syst., 5: 609097.]Search in Google Scholar
[Melzner F., Stange P., Trübenbach K., Thomsen J., Casties I., Panknin U., Gorb S.N., Gutowska M.A. (2011). Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS One, 6: e24223.]Search in Google Scholar
[Miranda R., Garcia-Carpintero E. (2018). Overcitation and overrepresentation of review papers in the most cited papers. J. Informetr., 12: 1015–1030.]Search in Google Scholar
[Mitchell A., Hayes C., Booth D.J., Nagelkerken I. (2023). Future shock: Ocean acidification and seasonal water temperatures alter the physiology of competing temperate and coral reef fishes. Sci. Total Environ., 883.]Search in Google Scholar
[Morshed M., Islam M., Lohano H., Shyamsundar P. (2020). Production externalities of shrimp aquaculture on paddy farming in coastal Bangladesh. Agric. Water Manag., 238: 106213.]Search in Google Scholar
[Moss A.S., Brooker A.J., Ozioko S.N., Nederlof M.A.J., Debnath S., Schrama J. (2024). Effects of feed processing type, protein source, and environmental salinity on Litopenaeus vannamei feeding behaviour. bioRxiv, https://doi.org/10.1101/2024.03.14.584959]Search in Google Scholar
[Muhala V., Chicombo T., Macate I., Guimarães-Costa A., Gundana H., Malichocho C., Hasimuna O., Remédio A., Maulu S., Cuamba L., Bessa-Silva A., Sampaio I. (2021). Climate change in fisheries and aquaculture: analysis of the impact caused by Idai and Kenneth cyclones in Mozambique. Front. Sustain. Food Syst., 5: 714187.]Search in Google Scholar
[Muralidhar M., Kumaran M., Jayanthi M., Dayal J., Kumar J., Saraswathy R., Nagavel A. (2021). Impacts of climate change and adaptations in shrimp aquaculture: A study in coastal Andhra Pradesh, India. AEHMS, 24: 28–38.]Search in Google Scholar
[Nang T., Lebailly P. (2017). On sustainable aquaculture. Open Access J., https://doi.org/10.19080/OFOAJ.2017.01.555563]Search in Google Scholar
[Nardi A., Mincarelli L., Benedetti M., Fattorini D., d’Errico G., Regoli F. (2017). Indirect effects of climate changes on cadmium bioavail-ability and biological effects in the Mediterranean mussel Mytilus galloprovincialis. Chemosphere, 169: 493–502.]Search in Google Scholar
[Nardi A., Benedetti M., Fattorini D., Regoli F. (2018). Oxidative and interactive challenge of cadmium and ocean acidification on the smooth scallop Flexopecten glaber. Aquat. Toxicol., 196: 53–60.]Search in Google Scholar
[Narita D., Rehdanz K., Tol R. (2012). Economic costs of ocean acidification: a look into the impacts on global shellfish production. Clim. Change, 113: 1049–1063.]Search in Google Scholar
[Naylor R.L., Hardy R.W., Buschmann A.H., Bush S.R., Cao L., Klinger D.H., Little D.C., Lubchenco J., Shumway S.E., Troell M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591: 551–563.]Search in Google Scholar
[Nguyen T., Tran T., Ahsan D. (2022). Aquaculture farmers’ economic risks due to climate change: evidence from Vietnam. Europ. J. Business Sci. Technol., 8.]Search in Google Scholar
[Nicholls R. (2011). Planning for the impacts of sea level rise. Oceanography, 24: 144–157.]Search in Google Scholar
[Noor M.I.M., Azra M.N., Lim V.-C., Zaini A.A., Dali F., Hashim I.M., Hamzah H.C., Abdullah M.F. (2021). Aquaculture research in Southeast Asia – a scientometric analysis (1990–2019). Int. Aquat. Res., 13: 271–288.]Search in Google Scholar
[O’Neill E., Rowan N. (2021). Microalgae as a natural ecological bioindicator for the simple real-time monitoring of aquaculture waste-water quality including provision for assessing impact of extremes in climate variance – A comparative case study from the Republic of Ireland. Sci. Total Environ., 802: 149800.]Search in Google Scholar
[Oyinlola M., Reygondeau G., Wabnitz C., Cheung W. (2020). Projecting global mariculture diversity under climate change. Glob. Change Biol., 26: 2134–2148.]Search in Google Scholar
[Pathirana E., Whittington R.J., Hick P.M. (2022). Impact of seawater temperature on the Pacific oyster (Crassostrea gigas) microbiome and susceptibility to disease associated with Ostreid herpesvirus-1 (OsHV-1). Anim. Prod. Sci., 62: 1040–1054.]Search in Google Scholar
[Pelletier N., Tyedmers P. (2007). Feeding farmed salmon: Is organic better? Aquaculture, 272: 399–416.]Search in Google Scholar
[Poloczanska E., Tsikliras A., Weatherdon L., Magnan A., Rogers A., Sumaila U., Cheung W. (2016). Observed and projected impacts of climate change on marine fisheries, aquaculture, coastal tourism, and human health: An update. Front. Marine Sci., 3.]Search in Google Scholar
[Rahman M.L., Shahjahan M., Ahmed N. (2021). Tilapia farming in Bangladesh: Adaptation to climate change. Sustainability, 13: 7657.]Search in Google Scholar
[Ramajo L., Fernández C., Núñez Y., Caballero P., Lardies M., Poupin M. (2019). Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling. ICES J. Mar. Sci., 76: 1836–1849.]Search in Google Scholar
[Reid G., Gurney-Smith H., Marcogliese D., Knowler D., Benfey T., Garber A., Forster I., Chopin,T., Brewer-Dalton K., Moccia R., Flaherty M., Smith C., Silva S. (2019). Climate change and aqua-culture: considering biological response and resources. Aquacult. Environ. Interac., 11: 569–602.]Search in Google Scholar
[Richards D.R., Friess D.A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. National Academy of Sciences of the United States of America. 12;113: 344–349.]Search in Google Scholar
[Rocha C., Cabral H., Marques J., Gonçalves A. (2022). A global overview of aquaculture food production with a focus on the activity’s development in transitional systems – the case study of a south European country (Portugal). J. Marine Sci. Eng., 10.]Search in Google Scholar
[Rud Y., Zaloilo O., Buchatsky L., Hrytsyniak I. (2020). The impact of climate change on fish infectious diseases (a review). Ribogospodarsʹka nauka Ukraïni, https://doi.org/10.15407/fsu2020.04.078]Search in Google Scholar
[Sae-Lim P., Kause A., Mulder H., Olesen I. (2017). Breeding and Genetics Symposium: Climate change and selective breeding in aquaculture. J. Anim. Sci., 95: 1801–1812.]Search in Google Scholar
[Sampaio E., Lopes A., Francisco S., Paula J., Pimentel M., Maulvault A., Repolho T., Grilo T., Pousão-Ferreira P., Marques A., Rosa R. (2018). Ocean acidification dampens physiological stress response to warming and contamination in a commercially-important fish (Argyrosomus regius). Sci. Total Environ., 618: 388–398.]Search in Google Scholar
[Samuel-Fitwi B., Meyer S., Reckmann K., Schroeder J.P., Schulz C. (2013). Aspiring for environmentally conscious aquafeed: comparative LCA of aquafeed manufacturing using different protein sources. J. Cleaner Prod., 52: 225–233.]Search in Google Scholar
[Scambos T., Abdalati W. (2022). How fast is sea level rising? Arctic Antarctic Alpine Res., 54: 123–124.]Search in Google Scholar
[Scanes E., Scanes P.R. Ross P.M. (2020). Climate change rapidly warms and acidifies Australian estuaries. Nat. Commun., 11: 1803.]Search in Google Scholar
[Scavia D., Justić D., Obenour D., Craig K., Wang L. (2019). Hypoxic volume is more responsive than hypoxic area to nutrient load reductions in the northern Gulf of Mexico – and it matters to fish and fisheries. Environ. Res. Lett., 14.]Search in Google Scholar
[Schäfer N., Matoušek J., Rebl A., Stejskal V., Brunner R.M., Goldammer T., Verleih M., Korytář T. (2021). Effects of chronic hypoxia on the immune status of pikeperch (Sander lucioperca Linnaeus, 1758). Biology, 10: 649.]Search in Google Scholar
[Servili A., Lévêque E., Mouchel O., Devergne J., Lebigre C., Roussel S., Mazurais D., Zambonino-Infante J. (2022). Ocean acidification alters the acute stress response of a marine fish. Sci. Total Environ., 858: 159804.]Search in Google Scholar
[Shi K., Li J., Lv J., Liu P., Li J., Li S. (2020). Full-length transcriptome sequences of ridgetail white prawn Exopalaemon carinicauda provide insight into gene expression dynamics during thermal stress. Sci. Total Environ., 747: 141238.]Search in Google Scholar
[Soliman N. (2023). Risk assessment and vulnerability of aquaculture activities in the Nile Delta to climate change impacts and its implications on food security. Mediterr. Aquacult. J., 10: 40–53.]Search in Google Scholar
[Stavrakidis-Zachou O., Lika K., Anastasiadis P., Papandroulakis N. (2021). Projecting climate change impacts on Mediterranean fin-fish production: a case study in Greece. Clim. Change, 165.]Search in Google Scholar
[Tegomo F., Zhong Z., Njomoue A., Okon S., Ullah S., Gray N., Chen K., Sun Y., Xiao J., Wang L., Ye Y., Huang H., Shao Q. (2021). Experimental studies on the impact of the projected ocean acidification on fish survival, health, growth, and meat quality; black sea bream (Acanthopagrus schlegelii), physiological and histological studies. Animals (Basel), 11: 3119.]Search in Google Scholar
[Thirunavukkarasu A., Kailasam M., Sundaray J., Biswas G., Kumar P., Subburaj R., Thiagarajan G. (2015). Controlled breeding, seed production and culture of brackishwater fishes. In: Advances in Marine Brackishwater Aquaculture, Perumal S., Thirunavukkarasu A.R., Pachiappan P. (eds). Springer, pp. 75–87.]Search in Google Scholar
[Troell M., Naylor R.L., Metian M., Beveridge M., Tyedmers P.H., Folke C., Arrow K.J., Barrett S., Crépin A.S., Ehrlich P.R., Gren A., Kautsky N., Levin S.A., Nyborg K., Österblom H., Polasky S., Scheffer M., Walker B.H., Xepapadeas T., de Zeeuw A. (2014). Does aquaculture add resilience to the global food system? Proceedings of the National Academy of Sciences of the United States of America. 16, 111: 13257–13263.]Search in Google Scholar
[Turchini G., Nie P. (2020). The climate is still changing. Rev. Aqua-cult., https://doi.org/10.1111/raq.12517]Search in Google Scholar
[Valenti W., Barros H., Moraes-Valenti P., Bueno G., Cavalli R. (2021). Aquaculture in Brazil: past, present and future. Aquacult. Rep., 19: 100611.]Search in Google Scholar
[Wade N.M., Clark T.D., Maynard B.T., Atherton S., Wilkinson R.J., Smullen R.P., Taylor R.S. (2019). Effects of an unprecedented summer heatwave on the growth performance, flesh colour and plasma biochemistry of marine cage-farmed Atlantic salmon (Salmo salar). J. Therm. Biol., 80: 64–74.]Search in Google Scholar
[Wang L., Sun F., Wen Y., Yue G. (2021). Effects of ocean acidification on transcriptomes in Asian seabass juveniles. Marine Biotechnol., 23: 445–455.]Search in Google Scholar
[Wheeler R., Lobley M. (2021). Managing extreme weather and climate change in UK agriculture: Impacts, attitudes and action among farmers and stakeholders. Clim. Risk Manage., 32: 100313.]Search in Google Scholar
[Whitefield C., Braby C., Barth J. (2021). Capacity building to address ocean change: organizing across communities of place, practice and governance to achieve ocean acidification and hypoxia resilience in Oregon. Coastal Manage., 49: 532–546.]Search in Google Scholar
[Wijsman J., Troost K., Fang J., Roncarati A. (2018). Global production of marine bivalves. Trends and challenges. In: Goods and services of marine bivalves, Smaal A.C., Ferreira J.G., Grant J., Petersen J.K., Strand Ø. (eds). Springer Open.]Search in Google Scholar
[Willer D., Aldridge D. (2017). Microencapsulated diets to improve bivalve shellfish aquaculture. Royal Soc. Open Sci., 4.]Search in Google Scholar
[Yang P., He Q., Huang J., Tong C. (2015). Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeastern China. Atmos. Environ., 115: 269–277.]Search in Google Scholar
[Yang P., Zhang Y., Yang H., Zhang Y., Xu J., Tan L., Tong C., Lai D.Y.F. (2019). Large fine-scale spatiotemporal variations of CH4 diffusive fluxes from shrimp aquaculture ponds affected by organic matter supply and aeration in Southeast China. J. Geophys. Res. Biogeosci., 124: 1290–1307.]Search in Google Scholar
[Yu L. (2019). Assessing the economic impacts of ocean acidification on Asia’s mollusk mariculture. KMI Int. J. Marit. Aff. Fish., 11: 17–30.]Search in Google Scholar
[Yu L., Gan J. (2021). Mitigation of eutrophication and hypoxia through oyster aquaculture: an ecosystem model evaluation off the Pearl River Estuary. Environ. Sci. Technol., 55: 5506–5514.]Search in Google Scholar
[Yuan J., Xiang J., Liu D., Kang H., He T., Kim S., Lin Y., Freeman C., Ding W. (2019). Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture. Nat. Clim. Change, 9: 318–322.]Search in Google Scholar
[Zhao X., Han Y., Chen B., Xia B., Qu K., Liu G. (2019). CO2-driven ocean acidification weakens mussel shell defense capacity and induces global molecular compensatory responses. Chemosphere, 243: 125415.]Search in Google Scholar