Acceso abierto

Enhancing nutrient digestibility and antioxidant efficacy in piglets: The impact of fermented rapeseed meal supplementation on biochemical parameters and oxidative stress markers


Cite

Agyekum A.K., Nyachoti C.M. (2017). Nutritional and metabolic consequences of feeding high fiber diets to pigs. Engineering, 3: 716–725. Search in Google Scholar

Augustyniak A., Czyżewska-Dors E., Pomorska-Mól M. (2023). Immune status of piglets during the first week of life: Current knowledge, significance and assessment – a review. Ann. Anim. Sci., 23: 391–403. Search in Google Scholar

AOAC (2016). Official Methods of Analysis of AOAC International, 20th ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA. Search in Google Scholar

Brestenský M., Nitrayová S., Heger J., Patráš P. (2017). Chromic oxide and acid-insoluble ash as markers in digestibility studies with growing pigs and sows. J. Anim. Physiol. Anim. Nutr., 101: 46–52. Search in Google Scholar

Buckley A., Turner J.R. (2018). Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb. Perspect. Biol., 10: a029314. Search in Google Scholar

Chen F., Wang H., Chen J., Liu Y., Wen W., Li Y., Huang X. (2020). Lactobacillus delbrueckii ameliorates intestinal integrity and antioxidant ability in weaned piglets after a lipopolysaccharide challenge. Oxid. Med. Cell. Longev., 2020: 6028606. Search in Google Scholar

Czech A., Sembratowicz I., Kiesz M. (2021 a). The effects of a fermented rapeseed or/and soybean meal additive on antioxidant parameters in the blood and tissues of piglets. Animals, 11: 1646. Search in Google Scholar

Czech A., Grela E.R., Nowakowicz-Dębek B., Wlazło Ł. (2021 b). The effects of a fermented rapeseed meal or/and soybean meal additive on the blood lipid profile and immune parameters of piglets and on minerals in their blood and bone. PLoS One, 24: e0253744. Search in Google Scholar

Czech A., Stępniowska A., Kiesz, M. (2022). Effect of fermented rapeseed meal as a feed component on the redox and immune system of pregnant sows and their offspring. Ann. Anim. Sci., 22: 201–219. Search in Google Scholar

Czech A., Wlazło Ł., Łukasiewicz M., Florek M., Nowakiewicz-Dębek B. (2023). Fermented rapeseed meal enhances the digestibility of protein and macro- and microminerals and improves the performance of weaner pigs. Anim. Feed Sci. Technol., 300: 115656. Search in Google Scholar

Đorđević T.M., Šiler-Marinković S.S., Dimitrijević-Branković S.I. (2010). Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chem., 119: 957–963. Search in Google Scholar

Feng J., Liu X., Xu Z.R., Lu Y.P., Liu Y.Y. (2007). The effect of Aspergillus oryzae fermented soybean meal on growth performance, digestibility of dietary components and activities of intestinal enzymes in weaned piglets. Anim. Feed Sci. Technol., 134: 295–303. Search in Google Scholar

Friedewald W.T., Levy R.I., Fredrickson D.S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 18: 499–502. Search in Google Scholar

Gołębiowska K., Fraś A., Gołębiewski D. (2022). Rapeseed meal as a feed component in monogastric animal nutrition – a review. Ann. Ani. Sci., 22: 1163–1183. Search in Google Scholar

Huang C.H., Chen C.L., Shieh C.C., Chang S.H., Tsai G.J. (2022). Evaluation of hypoglycemic and antioxidant activities of soybean meal products fermented by Lactobacillus plantarum FPS 2520 and Bacillus subtilis N1 in rats fed with high-fat diet. Metabolites, 12: 442. Search in Google Scholar

Jazi V., Ashayerizadeh A., Toghyani M., Shabani A., Tellez G., Toghyani M. (2018). Fermented soybean meal exhibits probiotic properties when added to Japanese quail diets instead of soybean meal. Poultry Sci., 97: 2113–2122. Search in Google Scholar

Klimiuk K., Sembratowicz I., Czech A. (2023). Effect of the inclusion of extruded flaxseed in the diet of fattening pigs on performance parameters and blood parameters. Ann. Anim. Sci., 23: 1085–1093. Search in Google Scholar

Koo B., Bustamante-García D., Nyachoti C.M. (2018). Energy content and nutrient digestibility of diets containing Lactobacillus-fermented barley or wheat fed to weaned pigs. J. Anim. Sci., 96: 4802–4811. Search in Google Scholar

Lan R., Koo J., Kim I. (2016). Effect of Lactobacillus acidophilus supplementation on growth performance, nutrient digestibility, fecal microbial emissions and noxious gas emissions in weaned piglets. J. Sci. Food Agric., 97: 1310–1315. Search in Google Scholar

Li H., Yin J., Tan B., Chen J., Zhang H., Li Z., Ma X. (2021). Physiological function and application of dietary fiber in pig nutrition: A review. Anim. Nutr., 7: 259–267. Search in Google Scholar

Liong M.T., Shah N.P. (2005). Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains. Int. Dairy J., 15: 391–398. Search in Google Scholar

Liu A., Liao B., Yin S., Ye Z., He M., Li X., Liu Y., Xu Y. (2023). Quantitative proteomic analysis reveals the mechanisms of sinapine alleviate macrophage foaming. Molecules, 28: 2012. Search in Google Scholar

Liu N., Ji Y., Yang Y., Jia H., Si X., Jiang D., Zhang Y., Dai Z., Wu Z. (2021). Impact of dietary crude protein level on hepatic lipid metabolism in weaned female piglets. Animals, 11: 1829. Search in Google Scholar

Liu S., Du M., Tu Y., You W., Chen W., Liu G., Li J., Wang Y., Lu Z., Wang T., Shan T. (2022). Fermented mixed feed alters growth performance, carcass traits, meat quality and muscle fatty acid and amino acid profiles in finishing pigs. Anim. Nutr., 12: 87–95. Search in Google Scholar

McCarthy J.F., Aherne F.X., O D.B. (1974). Use of HCl insoluble ash as an index material for determining apparent digestibility with pigs. Can. J. Anim. Sci., 54: 107–109. Search in Google Scholar

Mukherjee R., Chakraborty R., Dutta A. (2016). Role of fermentation in improving nutritional quality of soybean meal – A review. Asian-Australas. J. Anim. Sci., 29: 1523–1529. Search in Google Scholar

Nie C., Wang Y., Liu Y., Liu J., Ge W., Ma X., Zhang W. (2020). Impacts of dietary protein from fermented cottonseed meal on lipid metabolism and metabolomic profiling in the serum of broilers. Curr. Protein Pept. Sci., 21: 812–820. Search in Google Scholar

Polimeni L., Del Ben M., Baratta F., Perri L., Albanese F., Pastori D., Violi F., Angelico F. (2015). Oxidative stress: New insights on the association of non-alcoholic fatty liver disease and atherosclerosis. World J. Hepatol., 7: 1325–1336. Search in Google Scholar

Prawirodigdo S., Gannon N.J., Leury B.J., Dunshea F.R. (2021). Acid-insoluble ash is a better indigestible marker than chromic oxide to measure apparent total tract digestibility in pigs. Anim. Nutr., 7: 64–71. Search in Google Scholar

Qu H., Zong L., Sang J., Wa Y., Chen D., Huang Y., Chen X., Gu R. (2022). Effect of Lactobacillus rhamnosus hsryfm 1301 fermented milk on lipid metabolism disorders in high-fat-diet rats. Nutrients, 14: 4850. Search in Google Scholar

Sanders M.E. (2000). Considerations for use of probiotic bacteria to modulate human health. J. Nutr., 130: 384–390. Search in Google Scholar

Satessa G.D., Tamez-Hidalgo P., Kjærulff S., Vargas-Bello-Pérez E., Dhakal R., Nielsen M.O. (2020). Effects of Increasing doses of lactobacillus pre-fermented rapeseed product with or without inclusion of macroalgae product on weaner piglet performance and intestinal development. Animals, 10: 559. Search in Google Scholar

Scharek-Tedin L., Kreuzer-Redmer S., Twardziok S.O., Siepert B., Klopfleisch R., Tedin K., Zentek J., Pieper R. (2015). Probiotic treatment decreases the number of CD14-expressing cells in porcine milk which correlates with several intestinal immune parameters in the piglets. Front. Immunol., 6: 108. Search in Google Scholar

Sobotka W., Fiedorowicz-Szatkowska E. (2021). The Effect of replacing genetically modified soybean meal with 00-rapeseed meal, faba bean and yellow lupine in grower-finisher diets on nutrient digestibility, nitrogen retention, selected blood biochemical parameters and fattening performance of pigs. Animals, 11: 960. Search in Google Scholar

Sun Z., Li H., Li Y., Qiao J. (2020). Lactobacillus salivarius, a potential probiotic to improve the health of lps-challenged piglet intestine by alleviating inflammation as well as oxidative stress in a dose-dependent manner during weaning transition. Front. Vet. Sci., 7: 547425. Search in Google Scholar

Taranu I., Pistol G.C., Anghel A.C., Marin D., Bulgaru C. (2022). Yeast-fermented rapeseed meal extract is able to reduce inflammation and oxidative stress caused by Escherichia coli lipopolysaccharides and to replace ZnO in Caco-2/HTX29 Co-Culture cells. Int. J. Mol. Sci., 23: 11640. Search in Google Scholar

Tomaszewska E., Muszyński S., Świetlicka I., Wojtysiak D., Dobrowolski P., Arciszewski M.B., Donaldson J., Czech A., Hułas-Stasiak M., Kuc D., Mielnik-Błaszczak M. (2022). Prenatal acrylamide exposure results in time-dependent changes in liver function and basal hematological, and oxidative parameters in weaned Wistar rats. Sci. Rep., 12: 14882. Search in Google Scholar

Tumbleson M.E., Meade R.J. (1966). Effect of source and level of dietary protein on liver enzyme systems in the young pig. J. Nutr., 89: 487–494. Search in Google Scholar

Tybirk P.E.R. (2015). Nutrient recommendations for pigs in Denmark, 17th ed. SEGES-VSP Danis Pig Research Center, Copenhague, Denmark. Search in Google Scholar

Wang A.N., Yi X.W., Yu H.F., Dong B., Qiao S.Y. (2009). Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidant effect on fattening pigs. J. Appl. Microbiol., 107: 1140–1148. Search in Google Scholar

Wang C., Lin C., Su W., Zhang Y., Wang F., Wang Y., Shi C., Lu Z. (2018). Effects of supplementing sow diets with fermented corn and soybean meal mixed feed during lactation on the performance of sows and progeny. J. Anim. Sci., 96: 206–214. Search in Google Scholar

Wang Y., Sun H., Liu X.A. (2022). Novel fermented rapeseed meal, inoculated with selected protease-assisting screened B. subtilis YY-4 and L. plantarum 6026, showed high availability and strong antioxidant and immunomodulation potential capacity. Foods, 11: 2118. Search in Google Scholar

Winiarska-Mieczan A., Kwiecień M., Jachimowicz-Rogowska K., Muszyński S., Tomszewska E. (2023). Bioactive compounds, antibiotics and heavy metals: Effects on the intestinal structure and microbiome of monogastric animals–a non-systematic review. Ann. Anim. Sci., 23: 289–313. Search in Google Scholar

Winnicka A. (2021). Reference values for basic laboratory tests. SGGW, Warsaw, Poland. Search in Google Scholar

Wlazło Ł., Nowakowicz-Dębek B., Ossowski M., Łukaszewicz M., Czech A. (2022). Effect of fermented rapeseed meal in diets for piglets on blood biochemical parameters and the microbial composition of the feed and faeces. Animals, 12: 2972. Search in Google Scholar

Wu Z., Chen J., Ahmed Pirzado S., Haile T.H., Cai H., Liu G. (2021). The effect of fermented and raw rapeseed meal on the growth performance, immune status and intestinal morphology of broiler chickens. J. Anim. Physiol. Anim. Nutr., 106: 296–307. Search in Google Scholar

Xin J., Zheng D., Wang H., Sun N., Zhao Y., Dan Y., Pan K., Jing B., Ni X. (2017). Live probiotic Lactobacillus johnsonii BS15 promotes growth and reduces fat deposition by Improving lipid metabolism, intestinal development and intestinal microflora in broilers. Front. Microbiol., 8: 1073. Search in Google Scholar

Xu B., Li Z., Wang C., Fu J., Zhang Y., Wang Y., Lu Z. (2020). Effects of fermented feed supplementation on pig growth performance: A meta-analysis. Anim. Feed Sci. Technol., 259: 114315. Search in Google Scholar

Yan H., Jin J.Q., Yang P., Yu B., He J., Mao X.B., Yu J., Chen D.W. (2022). Fermented soybean meal increases nutrient digestibility via the improvement of intestinal function, anti-oxidative capacity and immune function of weaned pigs. Animal, 6: 100557. Search in Google Scholar

Yoon G.A., Park S. (2014). Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats. Nutr. Res. Pract., 8: 618–624. Search in Google Scholar

Zhao Y.S., Eweys A.S., Zhang J.Y., Zhu Y., Bai J., Darwesh O.M., Zhang H.B., Xiao X. (2021). Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants., 10: 2004. Search in Google Scholar

Zhong Z., Zhang W., Du R., Meng H., Zhang H. (2012). Lactobacillus casei Zhang stimulates lipid metabolism in hypercholesterolemic rats by affecting gene expression in the liver. Eur. J. Lipid Sci. Techn., 114: 224–252. Search in Google Scholar

Zhu C., Guan Q., Song C., Zhong L., Ding X., Zeng H., Nie P., Song L. (2021). Regulatory effects of Lactobacillus fermented black barley on intestinal microbiota of NAFLD rats. Food Res. Int., 147: 110467. Search in Google Scholar

Zhu J., Gao M., Zhang R., Sun Z., Wang C., Yang F., Huang T., Qu S., Zhao L., Li Y., Hao Z. (2017). Effects of soybean meal fermented by L. plantarum, B. subtilis and S. cerevisieae on growth, immune function and intestinal morphology in weaned piglets. Microb. Cell Fact., 16: 191. Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine