Acceso abierto

A new strain of Saccharomyces cerevisiae in diets of lactating Holstein cows improved feed efficiency and lactation performance


Cite

AOAC (2005). The official method of analysis. Washington DC, AOAC International. Search in Google Scholar

Aoki N., Yanli Z., Kanda S., Kurokawa Y., Sultana H., Itabashi H. (2021). Effect of Saccharomyces cerevisiae fermentation product on ruminal fermentation, blood metabolites, and milk production in dairy cows. Jap. Agr. Res. Q., 55: 265–271. Search in Google Scholar

Azzaz H.H., Kholif A.E., Abd El Tawab A.M., El-Sherbiny M., Murad H.A., Hassaan N.A., Vargas-Bello-Pérez E. (2023). Lactation performance and feed utilization of Rahmani ewes fed with either a newly produced bacteriocin-like substance or a commercial bacteriocin. Transl. Anim. Sci., 7: txad010. Search in Google Scholar

Bauman D.E., Harvatine K.J., Lock A.L. (2011). Nutrigenomics, rumen-derived bioactive fatty acids, and the regulation of milk fat synthesis. Annu. Rev. Nutr., 31: 299–319. Search in Google Scholar

Beev G., Todorova P., Tchobanova S. (2007). Yeast cultures in ruminant nutrition. Bulg. J. Agricu. Sci., 13: 357–374. Search in Google Scholar

Benchaar C., Hassanat F., Yang W.Z. (2024). Effects of active dried yeast (Saccharomyces cerevisiae), a non-ionic surfactant, or their combination on gas production, rumen microbial fermentation and methane production in vitro. Anim. Feed Sci. Technol., 307: 115844. Search in Google Scholar

Bennett S.L., Arce-Cordero J.A., Brandao V.L.N., Vinyard J.R., Agustinho B.C., Monteiro H.F., Lobo R.R., Tomaz L., Faciola A.P. (2021). Effects of bacterial cultures, enzymes, and yeast-based feed additive combinations on ruminal fermentation in a dual-flow continuous culture system. Transl. Anim. Sci., 5: txab026. Search in Google Scholar

Bionaz M., Vargas-Bello-Pérez E., Busato S. (2020). Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. J. Anim. Sci. Biotechnol., 11: 110. Search in Google Scholar

Callaway E.S., Martin S.A. (1997). Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. J. Dairy Sci., 80: 2035–2044. Search in Google Scholar

Cancino-Padilla N., Catalán N., Siu-Ting K., Creevey C.J., Huws S.A., Romero J., Vargas-Bello-Pérez E. (2021). Long-term effects of dietary supplementation with olive oil and hydrogenated vegetable oil on the rumen microbiome of dairy cows. Microorganisms, 9: 1121. Search in Google Scholar

Chaiyabutr N. (2012). Milk Production - An Up-to-Date Overview of Animal Nutrition, Management and Health. London, UK, InTech. Search in Google Scholar

Chaucheyras-Durand F., Durand H. (2010). Probiotics in animal nutrition and health. Benef. Microbes., 1: 3–9. Search in Google Scholar

Chaucheyras-Durand F., Walker N.D., Bach A. (2008). Effects of active dry yeasts on the rumen microbial ecosystem: past, present and future. Anim. Feed Sci. Technol., 145: 5–26. Search in Google Scholar

Dai D., Liu Y., Kong F., Guo C., Dong C., Xu X., Li S., Wang W. (2023). Saccharomyces cerevisiae culture’s dose–response effects on ruminal nutrient digestibility and microbial community: an in vitro study. Fermentation, 9: 411. Search in Google Scholar

Dai X., Faciola A.P. (2019). evaluating strategies to reduce ruminal protozoa and their impacts on nutrient utilization and animal performance in ruminants – a meta-analysis. Front. Microbiol., 10: 2648. Search in Google Scholar

Dewanckele L., Toral P.G., Vlaeminck B., Fievez V. (2020). Invited review: Role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An update. J. Dairy Sci., 103: 7655–7681. Search in Google Scholar

Ding G., Chang Y., Zhao L., Zhou Z., Ren L., Meng Q. (2014). Effect of Saccharomyces cerevisiae on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios. J. Anim. Sci. Biotechnol., 5: 24. Search in Google Scholar

Elghandour M.M.Y., Kholif A.E., López S., Mendoza G.D., Odongo N.E., Salem A.Z.M. (2016). In vitro gas, methane, and carbon dioxide productions of high fibrous diet incubated with fecal inocula from horses in response to the supplementation with different live yeast additives. J. Equine Vet. Sci., 38: 64–71. Search in Google Scholar

Elghandour M.M.Y., Salem A.Z.M., Castañeda J.S.M., Camacho L.M., Kholif A.E., Chagoyán J.C.V. (2015). Direct-fed microbes: A tool for improving the utilization of low quality roughages in ruminants. J. Integr. Agric., 14: 526–533. Search in Google Scholar

Elghandour M.M.Y., Vázquez Chagoyán J.C., Salem A.Z.M., Kholif A.E., Martínez Castañeda J.S., Camacho L.M., Buendía G. (2014). In vitro fermentative capacity of equine fecal inocula of 9 fibrous forages in the presence of different doses of Saccharomyces cerevisiae. J. Equine Vet. Sci., 34: 619–625. Search in Google Scholar

El-Helow E.R., Elbahloul Y., El-Sharouny E.E., Ali S.R., Ali A.A.-M. (2015). Economic production of baker’s yeast using a new Saccharomyces cerevisiae isolate. Biotechnol. Biotechnol. Equip., 29: 705–713. Search in Google Scholar

Etim N.N., Enyenihi G.E., Williams M.E., Udo M.D., Offiong E.E.A. (2013). Haematological parameters: indicators of the physiological status of farm animals. Br. J. Sci., 10: 33–45. Search in Google Scholar

Fadel M., Foda M.S. (2001). A novel approach for production of highly active baker’s yeast from fodder yeast, a byproduct from ethanol production industry. J. Biological Sciences, 1: 614–620. Search in Google Scholar

Ferret A., Plaixats J., Caja G., Gasa J., Prió P. (1999). Using markers to estimate apparent dry matter digestibility, faecal output and dry matter intake in dairy ewes fed Italian ryegrass hay or alfalfa hay. Small Rumin. Res., 33: 145–152. Search in Google Scholar

Galyean, M. May T. (2010). Laboratory procedure in animal nutrition research. Lubbock, Texas, Department of Animal and Food Sciences, Texas Tech University. Search in Google Scholar

Hamdon H.A., Kassab A.Y., Vargas-Bello-Pérez E., Abdel Hafez G.A., Sayed T.A., Farghaly M.M., Kholif A.E. (2022). Using probiotics to improve the utilization of chopped dried date palm leaves as a feed in diets of growing Farafra lambs. Front. Vet. Sci., 9: 1048409. Search in Google Scholar

Hassan A.A., Salem A.Z.M., Kholif A.E., Samir M., Yacout M.H., Hafsa S.H.A., Mendoza G.D., Elghandour M.M.Y., Ayala M., Lopez S. (2016). Performance of crossbred dairy Friesian calves fed two levels of Saccharomyces cerevisiae: Intake, digestion, ruminal fermentation, blood parameters and faecal pathogenic bacteria. J. Agric. Sci., 154: 1488–1498. Search in Google Scholar

Khan N., Kewalramani N., Chaurasia M., Singh S., Haq Z. (2015). Effect of niacin supplementation on in-vitro rumen fermentation pattern in crossbred cattle. J. Anim. Res., 5: 479. Search in Google Scholar

Kholif A.E., Abdo M.M., Anele U.Y., El-Sayed M.M., Morsy T.A. (2017). Saccharomyces cerevisiae does not work synergistically with exogenous enzymes to enhance feed utilization, ruminal fermentation and lactational performance of Nubian goats. Livest. Sci., 206: 17–23. Search in Google Scholar

Kholif A.E., Olafadehan O.A. (2022). Dietary strategies to enrich milk with healthy fatty acids – A review. Ann. Anim. Sci., 22: 523–536. Search in Google Scholar

López S., Makkar H.P.S., Soliva C.R. (2010). Screening plants and plant products for methane inhibitors. Springer Netherlands. Search in Google Scholar

Maamouri O., Salem M. Ben (2021). Effect of yeast culture feed supply on growth, ruminal pH, and digestibility of fattening calves. Food Sci. Nutr., 9: 2762–2767. Search in Google Scholar

Martin S.A., Nisbet D.J. (1992). Effect of direct-fed microbials on rumen microbial fermentation. J. Dairy Sci., 75: 1736–1744. Search in Google Scholar

Michalak M., Wojnarowski K., Cholewińska P., Szeligowska N., Bawej M., Pacoń J. (2021). Selected alternative feed additives used to manipulate the rumen microbiome. Animals, 11: 1542. Search in Google Scholar

Murad H.A., Hosseany E.N., Abd Elhamid S.M., Abu-El Khair A.G., Azzaz H.H., Zahran M.O. (2019). Utilization of hydrolyzed UF-permeate supplemented with different nitrogen sources and vitamins for production of baker’s yeast. Biotechnol., 18: 55–63. Search in Google Scholar

Newbold C.J., Wallace R.J., Mcintosh F.M. (1996). Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Br. J. Nutr., 76: 249–261. Search in Google Scholar

NRC (2001). Nutrient Requirements of Dairy Cattle. Washington, D.C., D.C., USA, National Academies Press. Search in Google Scholar

Ogunade I., Schweickart H., McCoun M., Cannon K., McManus C. (2019). Integrating 16S rRNA sequencing and LC–MS-based metabolomics to evaluate the effects of live yeast on rumen function in beef cattle. Animals, 9: 28. Search in Google Scholar

Ogunade I.M., McCoun M. (2021). Effects of adding live Saccharomyces cerevisiae and Aspergillus-based enzyme extracts on ruminal fermentation, plasma polyamine concentrations, and fiber digestibility in beef steers fed a high-forage diet. Appl. Anim. Sci., 37: 21–26. Search in Google Scholar

Patra A.K. (2022). Animal Feed Science and Nutrition - Production, Health and Environment. IntechOpen. Search in Google Scholar

Patra A.K., Aschenbach J.R. (2018). Ureases in the gastrointestinal tracts of ruminant and monogastric animals and their implication in urea-N/ammonia metabolism: A review. J. Adv. Res., 13: 39–50. Search in Google Scholar

Pechova A., Illek J., Pavlata L. (2002). Metabolic profiles in dairy cows with fatty liver syndrome. Wiener Tieraerztliche Monatsschrift, 89: 325–332. Search in Google Scholar

Perdomo M.C., Marsola R.S., Favoreto M.G., Adesogan A., Staples C.R., Santos J.E.P. (2020). Effects of feeding live yeast at 2 dosages on performance and feeding behavior of dairy cows under heat stress. J. Dairy Sci., 103: 325–339. Search in Google Scholar

Pettersson J., Hindorf U., Persson P., Bengtsson T., Malmqvist U., Werkström V., Ekelund M. (2008). Muscular exercise can cause highly pathological liver function tests in healthy men. Br. J. Clin. Pharmacol., 65: 253–259. Search in Google Scholar

Phesatcha K., Phesatcha B., Wanapat M., Cherdthong A. (2021). The effect of yeast and roughage concentrate ratio on ruminal pH and protozoal population in Thai native beef cattle. Animals, 12: 53. Search in Google Scholar

Rinaldi S., Contò M., Claps S., Marchitelli C., Renzi G., Crisà A., Failla S. (2022). Milk fat depression and trans-11 to trans-10 C18:1 shift in milk of two cattle farming systems. Sustainability, 14: 977. Search in Google Scholar

Sales J., Janssens G.P.J. (2003). Acid-insoluble ash as a marker in digestibility studies: A review. J. Anim. Feed Sci., 12: 383–401. Search in Google Scholar

Sallam S.M.A., Abdelmalek M.L.R., Kholif A.E., Zahran S.M., Ahmed M.H., Zeweil H.S., Attia M.F.A., Matloup O.H., Olafadehan O.A. (2020). The effect of Saccharomyces cerevisiae live cells and Aspergillus oryzae fermentation extract on the lactational performance of dairy cows. Anim. Biotechnol., 31: 491–497. Search in Google Scholar

Sivinski S.E., Meier K.E., Mamedova L.K., Saylor B.A., Shaffer J.E., Sauls-Hiesterman J.A., Yoon I., Bradford B.J. (2022). Effect of Saccharomyces cerevisiae fermentation product on oxidative status, inflammation, and immune response in transition dairy cattle. J. Dairy Sci., 105: 8850–8865. Search in Google Scholar

Soest P.J. Van, Robertson J.B., Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583–3597. Search in Google Scholar

Sun X., Wang Y., Wang E., Zhang S., Wang Q., Zhang Y., Wang Y., Cao Z., Yang H., Wang W., Li S. (2021). Effects of Saccharomyces cerevisiae culture on ruminal fermentation, blood metabolism, and performance of high-yield dairy cows. Animals, 11: 2401. Search in Google Scholar

Tajima K., Aminov R.I., Nagamine T., Matsui H., Nakamura M., Benno Y. (2001). Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol., 67: 2766–2774. Search in Google Scholar

Theodorou M.K., Williams B.A., Dhanoa M.S., McAllan A.B., France J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol., 48: 185–197. Search in Google Scholar

Tyrrell H.F., Reid J.T. (1965). Prediction of the energy value of cow’s milk. J. Dairy Sci., 48: 1215–1223. Search in Google Scholar

Vargas-Bello-Pérez E., Cancino-Padilla N., Geldsetzer-Mendoza C., Morales M.S., Leskinen H., Garnsworthy P.C., Loor J.J., Romero J. (2020). Effects of dietary polyunsaturated fatty acid sources on expression of lipid-related genes in bovine milk somatic cells. Sci. Rep., 10: 14850. Search in Google Scholar

Xue L., Zhou S., Wang D., Zhang F., Li J., Cai L. (2022). The low dose of Saccharomyces cerevisiae is beneficial for rumen fermentation (both in vivo and in vitro) and the growth performance of heat-stressed goats. Microorganisms, 10: 1877. Search in Google Scholar

Zain M., Wijaya Setia Ningrat R., Suryani H., Jamarun N. (2022). Effect of various feed additives on the methane emissions from beef cattle based on an ammoniated palm frond feeds. In: Animal Feed Science and Nutrition - Production, Health and Environment, p. 1–18. Patra, A.K., Payan-Carreira, R., Eds. London, UK, IntechOpen. Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine