Acceso abierto

Impact of silver nanoparticles (Ag-NPs) as a dietary supplement on growth performance, carcass traits, blood metabolites, digestive enzymes, and cecal microbiota of growing rabbits


Cite

Abd F.G. (2014). Silver nanoparticles effect on some immunological parameters in rabbits. IOSR J. Pharmacy Biol. Sci., 9: 10–12. Search in Google Scholar

Abd El-Hack M.E., Alagawany M. (2022). Antibiotic Alternatives in Poultry and Fish Feed. Bentham Science Publishers https://doi.org/10.2174/97898150490151220101. Search in Google Scholar

Abdelsalam M., Al-Homidan I., Ebeid T., Abou-Emera O., Mostafa M., El-Razik M.A., Shehab-El-Deen M., Abdel Ghani S., Fathi M. (2019). Effect of silver nanoparticle administration on productive performance, blood parameters, antioxidative status, and silver residues in growing rabbits under hot climate. Animals, 9: 845. Search in Google Scholar

Ahmadi F. (2012). Impact of different levels of silver nanoparticles (Ag-NPs) on performance, oxidative enzymes and blood parameters in broiler chicks. Pak. Vet. J., 32: 325–328. Search in Google Scholar

Ahmadi F., Kurdestany A.H. (2010). The impact of silver nano particles on growth performance, lymphoid organs and oxidative stress indicators in broiler chicks. Glob. Vet., 5: 366–370. Search in Google Scholar

Ahmadi F., Rahimi F. (2011). The effect of different levels of Nano Silver on performance and retention of silver in edible tissues of broilers. World Appl. Sci. J., 12: 1–4. Search in Google Scholar

Ahmed M., Ismail Z.S.H., Elwerdany I., Abdel-Wareth A.A.A. (2023). Applications of biosynthesis of silver nanoparticles for sustainable poultry production under hot climatic conditions. A review. SVU-International J. Agric. Sci., 5: 137–151. Search in Google Scholar

Alhamad A.A., Zeghoud S., Amor I.B., Zaater A., Amor A.B., Aouadif A., Hemmami A.A. (2023). A short review of nanomaterials: Synthesis methods, properties, and applications. Alger. J. Chem. Eng. AJCE, 1: 01–07. Search in Google Scholar

Alagawany M., Qattan S.Y.A., Attia Y.A., El-Saadony M.T., Elnesr S.S., Mahmoud M.A., Madkour M., Abd El-Hack M.E., Reda F.M. (2021). Use of chemical nano-selenium as an antibacterial and antifungal agent in quail diets and its effect on growth, carcasses, antioxidant, immunity and caecal microbes. Animals, 11: 3027. Search in Google Scholar

Al-Sultan S.I., Hereba A.R.T., Hassanein K.M.A., Abd-Allah S.M.S., Mahmoud U.T., Abdel-Raheem S.M. (2022). The impact of dietary inclusion of silver nanoparticles on growth performance, intestinal morphology, caecal microflora, carcass traits and blood parameters of broiler chickens. Ital. J. Anim. Sci., 21: 967–978. Search in Google Scholar

Andi M.A., Hashemi M., Ahmadi F. (2011). Effects of feed type with/without nanosil on cumulative performance, relative organ weight and some blood parameters of broilers. Glob. Vet., 7: 605–609. Search in Google Scholar

Ansar S., Alshehri S.M., Abudawood M., Hamed S.S., Ahamad T. (2017). Antioxidant and hepatoprotective role of selenium against silver nanoparticles. Int. J. Nanomed., 12: 7789–7797. Search in Google Scholar

Asif A., Hasan M.Z. (2018). Application of nanotechnology in modern textiles: A review. Int. J. Curr. Engin. Technol., 8: 227–231. Search in Google Scholar

Bhanja S.K., Rath P.K., Goel A., Mehra M., Dhara S.K., Paswan V.K., Attia Y.A., Alqhtani A.H., Ali A.B.A., Shehata A.M. (2022). In ovo nano-silver and nutrient supplementation improves immunity and resistance against Newcastle disease virus challenge in broiler chickens. Front. Vet. Sci., 9: 948069. Search in Google Scholar

Blasco A., Ouhayoun J., Masoero G. (1993). Harmonization of criteria and terminology in rabbit meat research. World Rabbit Sci., 1: 3–10. Search in Google Scholar

Blomberg L., Henriksson A., Conway P. L. (1993). Inhibition of adhesion of Escherichia coli K88 to piglet ileal mucus by Lactobacillus spp. Appl. Environ. Microbiol., 59: 34–39. Search in Google Scholar

Bolandi N., Hashemi S. R., Davoodi D., Dastar B., Hassani S., Ashayerizadeh A. (2021). Performance, intestinal microbial population, immune and physiological responses of broiler chickens to diet with different levels of silver nanoparticles coated on zeolite. Ital. J. Anim. Sci., 20: 497–504. Search in Google Scholar

Boutwell J.H. (1962). Clinical chemistry. Laboratory manual and methods. J. Med. Educ., 37: 158. Search in Google Scholar

Coles E.H. (1986). Veterinary clinical Pathology, 4th ed. WB Saunders Comp. Philadelphia, London, pp. 136–170. Search in Google Scholar

Couvreur P., Vauthier C. (2006). Nanotechnology: Intelligent design to treat complex disease. Pharm. Res., 23: 1417–1450. Search in Google Scholar

Cromwell G.L. (1991). Antimicrobial agents. In: Swine nutrition, Miller E.R., Ullrey D.E., Lewis A.J. (eds). 1st ed. CRC Press, Boca Raton, FL, USA, pp. 297–314. Search in Google Scholar

De Blas C., Mateos G.G. (2010). Feed formulation. In: Nutrition of the rabbit, De Blas C., Wiseman J. (eds). London, CAB International, pp. 222–232. Search in Google Scholar

Dosoky W.M., Fouda M.M.G., Alwan A.B., Abdelsalam N.R., Taha A.E., Ghareeb R.Y., El-Aassar M.R., Khafaga A.F. (2021). Dietary supplementation of silver-silica nanoparticles promotes histological, immunological, ultrastructural, and performance parameters of broiler chickens. Sci. Rep., 11: 4166. Search in Google Scholar

El Moustafa E.-K.M., Ghazalah A.A., Rehan A.A.A. (2015). Effect of dietary nanosilver on broiler performance. Int. J. Poult. Sci., 14: 177–182. Search in Google Scholar

El Sabry M.I., McMillin K.W., Sabliov C.M. (2018). Nanotechnology considerations for poultry and livestock production systems – a review. Ann. Anim. Sci., 18: 319–334. Search in Google Scholar

El-Faham A., El-Sanhoury M., Mostafa M. (2017). Effect of nano-silver particles supplementation in drinking water on performance and intestinal micro-flora population of growing poultry. Egypt. J. Nutr. Feed., 20: 515–524. Search in Google Scholar

Farag M.R., Abo-Al-Ela H.G., Alagawany M., Azzam M.M., El-Saadony M.T., Rea S., Di Cerbo A., Nouh D.S. (2023). Effect of quercetin nanoparticles on hepatic and intestinal enzymes and stress-related genes in nile tilapia fish exposed to silver nanoparticles. Biomedicines, 11: 663. Search in Google Scholar

Fondevila M. (2010). Potential use of silver nanoparticles as an additive in animal feeding. In: Silver Nanoparticles, Perez D.P. (ed.). InTech, Rijeka, Croatia, pp. 325–334. Search in Google Scholar

Fondevila M., Herrer R., Casallas M.C., Abecia L., Ducha J.J. (2009). Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim. Feed Sci. Technol., 150: 259–269. Search in Google Scholar

Franco D., Calabrese G., Guglielmino S.P.P., Conoci S. (2022). Metalbased nanoparticles: Antibacterial mechanisms and biomedical application. Microorganisms, 10: 1778. Search in Google Scholar

Gong P., Li H., He X., Wang K., Hu J., Tan W., Zhang S., Yang X. (2007). Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. Nanotechnology, 18: 285604. Search in Google Scholar

Hameed H. (2021). Physiological role of Nanotechnology in Animal and Poultrynutrition: Review. Egypt. J. Vet. Sci., 52: 311–317. Search in Google Scholar

Hang D. T., Tra T. T. T. (2013). Effect on rabbit reproduction of adding silver-nano suspension to the drinking water. Livest. Res. Rural Dev., 25: 1–7. Search in Google Scholar

Hansen S. F., Michelson E. S., Kamper A., Borling P., Stuer-Lauridsen F., Baun A. (2008). Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology, 17: 438–447. Search in Google Scholar

Hassan A. M. (2018). Effect of nano silver on performance and some physiological parameters of broiler chicks under south Sinai condition. Int. J. Innov. Appl. Res., 6: 1–8. Search in Google Scholar

Hassanen E.I., Hussien A.M., Mehanna S. (2023). Chitosan coating silver nanoparticles as a promising feed additive in broilers chicken. BMC Vet. Res., 19: 265. Search in Google Scholar

Hosseini E. (2013). Study on physiological and piochemical activity of silver nanoparticles in male and female mice. BEPLS, 2: 21–6. Search in Google Scholar

Hotowy A., Sawosz E., Pineda L., Sawosz F., Grodzik M., Chwalibog A. (2012). Silver nanoparticles administered to chicken affect VEGFA and FGF2 gene expression in breast muscle and heart. Nanoscale Res. Lett., 7: 418 Search in Google Scholar

Ibrahim, K.E., Al-Mutary M.G., Bakhiet A.O., Khan H.A. (2018). Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. Molecules, 23: 1848. Search in Google Scholar

ISO 4832:2006. Microbiology of food and animal feeding stuffs — horizontal method for the enumeration of coliforms – Colony-count technique. Geneva: International Organization for Standardization; 2006. Search in Google Scholar

ISO 7218:2007. Microbiology of food and animal feeding stuffs – general requirements and guidance for microbiological examinations. Geneva: International Organization for Standardization; 2007. Search in Google Scholar

Kim Y. S., Song M. Y., Park J. D., Song K. S., Ryu H. R., Chung Y. H., Chang H. K., Lee J. H., Oh K. H., Kelman B. J., Hwang I. K., Yu I. J. (2010). Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol., 7: 20–30. Search in Google Scholar

Knetsch M.L.W., Koole L.H. (2011). New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers (Basel), 3: 340–366. Search in Google Scholar

Koracevic D., Koracevic G., Djordjevic V., Andrejevic S., Cosic V. (2001). Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol., 54: 356–361. Search in Google Scholar

Le Ouay B., Stellacci F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 10: 339–354. Search in Google Scholar

Li B.T., Van Kessel A.G., Caine W.R., Huang S.X., Kirkwood R.N. (2001). Small intestinal morphology and bacterial populations in ileal digesta and feces of newly weaned pigs receiving a high dietary level of zinc oxide. Can. J. Anim. Sci., 81: 511–516. Search in Google Scholar

Li M., Mizuuchi M., Burke T.R., Craigie R. (2006). Retroviral DNA integration: Reaction pathway and critical intermediates. EMBO J., 25: 1295–1304. Search in Google Scholar

Loghman A., Iraj S.H., Naghi D.A., Pejman M. (2012). Histopathologic and apoptotic effect of nanosilver in liver of broiler chickens. African J. Biotechnol., 11: 6207–6211. Search in Google Scholar

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193: 265–275. Search in Google Scholar

Madkour L.H. (2019). Introduction to Nanotechnology (NT) and Nanomaterials (NMs). in Advanced Structured Materials. (Vol. 116, pp. 1–47). Springer. Search in Google Scholar

Marai I.F.M., Ayyat M.S., Abd El-Monem U.M. (2001). Growth performance and reproductive traits at first parity of New Zealand white female rabbits as affected by heat stress and its alleviation under Egyptian conditions. Trop. Anim. Health Prod., 33: 451–462. Search in Google Scholar

Michalak I., Dziergowska K., Alagawany M., Farag M.R., El-Shall N.A., Tuli H.S., Emran T.B., Dhama K. (2022). The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet. Quarterly, 42: 68–94. Search in Google Scholar

Mikhailova E.O. (2020). Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J. Funct. Biomater., 11: 84. Search in Google Scholar

Mueller S., Riedel H.D., Stremmel W. (1997). Determination of catalase activity at physiological hydrogen peroxide concentrations. Anal. Biochem., 245: 55–60. Search in Google Scholar

Nadworny P.L., Wang J., Tredget E. E., Burrell R.E. (2010). Anti-inflammatory activity of nanocrystalline silver-derived solutions in porcine contact dermatitis. J. Inflamm., 7: 1–20. Search in Google Scholar

Nishikimi M., Appaji Rao N., Yagi K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun., 46: 849–854. Search in Google Scholar

Ognik K., Cholewińska E., Czech A., Kozłowski Wlazło K., Nowakowicz-Dȩbek B., Szlązak R., Tutaj K. (2016). Effect of silver nanoparticles on the immune, redox, and lipid status of chicken blood. Czech J. Anim. Sci., 61: 450–461. Search in Google Scholar

Ohkawa H., Ohishi N., Yagi K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95: 351–358. Search in Google Scholar

Paglia D. E., Valentine W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., 70: 158–169. Search in Google Scholar

Park E. J., Bae E., Yi J., Kim Y., Choi K., Lee S. H., Yoon J., Lee B. C., Park K. (2010). Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Toxicol. Pharmacol., 30: 162–168. Search in Google Scholar

Percival S. L., Bowler P. G., Russell D. (2005). Bacterial resistance to silver in wound care. J. Hosp. Infect., 60: 1–7. Search in Google Scholar

Pineda L., Chwalibog A., Sawosz E., Lauridsen C., Engberg R., Elnif J., Hotowy A., Sawosz F., Gao Y., Ali A., Moghaddam H.S. (2012). Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Arch. Anim. Nutr., 66: 416–429. Search in Google Scholar

Prabhu S., Poulose E. K. (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett., 2: 32. Search in Google Scholar

Prasad R.D., Sahoo A.K., Shrivastav O.P., Charmode N., Prasad S.R., Kamat R., Kajave N.G., Chauhan J., Banga S., Tamboli U., Pandharpatte M. S., Atigre R.H., Shaikh V., Padvi M.N., Salvalkar P., Prasad N.R. (2022). A Review on Aspects of Nanotechnology in Food Science and Animal Nutrition. ES Food Agrofor., 8: 12–46. Search in Google Scholar

Radwan, M., El-Sharkawy M.A., Negm M.A., Mohammadein A., Malki J.S.A., Al-Thomali A.W., Mohamed A.M., Yassir S., Bashar M.A.E. (2022). Dual effect of dietary seaweed of extract nanoparticles (GNS) with bionanocomposite cellulose acetate membranes (CA/bio-Ag-Nps) on growth performance and health status of the Nile tilapia (Oreochromis niloticus): Specification on feed utilization, immune system, and antiparasitic action. Front. Mar. Sci., 9: 1–18. Search in Google Scholar

Reda F.M., Alagawany M., Salah A.S. Mahmoud M.A., Azzam M.M., Di Cerbo A., El-Saadony M.T., Elnesr S.S. (2023). Biological selenium nanoparticles in quail nutrition: biosynthesis and its impact on performance, carcass, blood chemistry, and cecal microbiota. Biol. Trace Elem. Res., https://doi.org/10.1007/s12011-023-03996-3 Search in Google Scholar

Sadr S., Lotfalizadeh N., Ghafouri S. A., Delrobaei M., Komeili N., Hajjafari A. (2023). Nanotechnology innovations for increasing the productivity of poultry and the prospective of nanobiosensors. Vet. Med. Sci., 11: 1–14. Search in Google Scholar

Saleh A.A., El-Magd M.A. (2018). Beneficial effects of dietary silver nanoparticles and silver nitrate on broiler nutrition. Environ. Sci. Pollut. Res., 25: 27031–27038. Search in Google Scholar

Salem S. S., Fouda A. (2021). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an Overview. Biol. Trace Elem. Res., 199: 344–370. Search in Google Scholar

Salleh A., Naomi R., Utami N. D., Mohammad A. W., Mahmoudi E., Mustafa N., Fauzi M. B. (2020). The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials, 10: 1566. Search in Google Scholar

Sawosz E., Chwalibog A., Szeliga J., Sawosz F., Grodzik M., Rupiewicz M., Niemiec T., Kacprzyk K. (2010). Visualization of gold and platinum nanoparticles interacting with Salmonella Enteritidis and Listeria monocytogenes. Int. J. Nanomedicine, 5: 631–637. Search in Google Scholar

Sawosz E., Binek M., Grodzik M., Zielinska M., Sysa P., Szmidt M., Niemiec T., Chwalibog A. (2007). Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch. Anim. Nutr., 61: 444–451. Search in Google Scholar

Singh M., Singh S., Prasad S., Gambhir I. S. (2008). Nanotechnology in Medicine and Antibacterial Effect of Silver Nanoparticles. Dig. J. Nanomater. Biostructure, 3:115–122. Search in Google Scholar

SPSS (2008). Statistical Package For Social Sciences, statistics for windows, version 17. Released 2008. Chicago, USA. Search in Google Scholar

Studnicka A., Sawosz E., Grodzik M., Chwalibog A., Balcerak M. (2009). Influence of nanoparticles of silver/palladium alloy on chicken embryos’ development. Ann. Warsaw Univ. Life Sci. SGGW Anim. Sci., 46: 237–242. Search in Google Scholar

Syrvatka V., Rozgoni I., Slyvchuk Y., Milovanova G., Hevkan I., Matyukha I. (2014). Effects of silver nanoparticles in solution and liposomal form on some blood parameters in female rabbits during fertilization and early embryonic development. J. Microbiol. Biotechnol. Food Sci., 3: 274–278. Search in Google Scholar

Trotti R., Carratelli M., Barbieri M. (2002). Performance and clinical application of a new, fast method for the detection of hydroperoxides in serum. Panminerva Med., 44: 37–40. Search in Google Scholar

Vadalasetty K.P., Lauridsen C., Engberg R.M., Vadalasetty R., Kutwin M., Chwalibog A., Sawosz E. (2018). Influence of silver nanoparticles on growth and health of broiler chickens after infection with Campylobacter jejuni. BMC Vet. Res., 14: 14. Search in Google Scholar

Verma A.K., Singh V.P., Vikas P. (2012). Application of nanotechnology as a tool in animal products processing and marketing: An overview. Am. J. Food Technol., 7: 445–451. Search in Google Scholar

Wang Y., Yang Y., Shi Y., Song H., Yu. C. (2020). Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv. Mater., 32: 1904106. Search in Google Scholar

Wright J.B., Lam K., Burrell R.E. (1998). Wound management in an era of increasing bacterial antibiotic resistance: A role for topical silver treatment. Am. J. Infect. Control, 26: 572–577. Search in Google Scholar

Yang W., Shen C., Ji Q., An H., Wang J., Liu Q., Zhang Z. (2009). Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology, 20: 085102. Search in Google Scholar

Yassin M.T., Mostafa A.A.F., Al-Askar A.A., Al-Otibi F.O. (2022). Synergistic antibacterial activity of green synthesized silver nanomaterials with colistin antibiotic against multidrug-resistant bacterial pathogens. Crystals, 12: 1057. Search in Google Scholar

Yildirimer L., Thanh N.T.K., Loizidou M., Seifalian A.M. (2011). Toxicological considerations of clinically applicable nanoparticles. Nano Today, 6: 585–607. Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine